3 resultados para Magnetic parameters
em Université de Montréal, Canada
Resumo:
Les lésions de la moelle épinière ont un impact significatif sur la qualité de la vie car elles peuvent induire des déficits moteurs (paralysie) et sensoriels. Ces déficits évoluent dans le temps à mesure que le système nerveux central se réorganise, en impliquant des mécanismes physiologiques et neurochimiques encore mal connus. L'ampleur de ces déficits ainsi que le processus de réhabilitation dépendent fortement des voies anatomiques qui ont été altérées dans la moelle épinière. Il est donc crucial de pouvoir attester l'intégrité de la matière blanche après une lésion spinale et évaluer quantitativement l'état fonctionnel des neurones spinaux. Un grand intérêt de l'imagerie par résonance magnétique (IRM) est qu'elle permet d'imager de façon non invasive les propriétés fonctionnelles et anatomiques du système nerveux central. Le premier objectif de ce projet de thèse a été de développer l'IRM de diffusion afin d'évaluer l'intégrité des axones de la matière blanche après une lésion médullaire. Le deuxième objectif a été d'évaluer dans quelle mesure l'IRM fonctionnelle permet de mesurer l'activité des neurones de la moelle épinière. Bien que largement appliquées au cerveau, l'IRM de diffusion et l'IRM fonctionnelle de la moelle épinière sont plus problématiques. Les difficultés associées à l'IRM de la moelle épinière relèvent de sa fine géométrie (environ 1 cm de diamètre chez l'humain), de la présence de mouvements d'origine physiologique (cardiaques et respiratoires) et de la présence d'artefacts de susceptibilité magnétique induits par les inhomogénéités de champ, notamment au niveau des disques intervertébraux et des poumons. L'objectif principal de cette thèse a donc été de développer des méthodes permettant de contourner ces difficultés. Ce développement a notamment reposé sur l'optimisation des paramètres d'acquisition d'images anatomiques, d'images pondérées en diffusion et de données fonctionnelles chez le chat et chez l'humain sur un IRM à 3 Tesla. En outre, diverses stratégies ont été étudiées afin de corriger les distorsions d'images induites par les artefacts de susceptibilité magnétique, et une étude a été menée sur la sensibilité et la spécificité de l'IRM fonctionnelle de la moelle épinière. Les résultats de ces études démontrent la faisabilité d'acquérir des images pondérées en diffusion de haute qualité, et d'évaluer l'intégrité de voies spinales spécifiques après lésion complète et partielle. De plus, l'activité des neurones spinaux a pu être détectée par IRM fonctionnelle chez des chats anesthésiés. Bien qu'encourageants, ces résultats mettent en lumière la nécessité de développer davantage ces nouvelles techniques. L'existence d'un outil de neuroimagerie fiable et robuste, capable de confirmer les paramètres cliniques, permettrait d'améliorer le diagnostic et le pronostic chez les patients atteints de lésions médullaires. Un des enjeux majeurs serait de suivre et de valider l'effet de diverses stratégies thérapeutiques. De telles outils représentent un espoir immense pour nombre de personnes souffrant de traumatismes et de maladies neurodégénératives telles que les lésions de la moelle épinière, les tumeurs spinales, la sclérose en plaques et la sclérose latérale amyotrophique.
Resumo:
La résonance magnétique cardiovasculaire sensible à l'oxygénation (OS-CMR) est devenue une modalité d'imagerie diagnostique pour la surveillance de changements dans l'oxygénation du myocarde. Cette technique offre un grand potentiel en tant qu'outil diagnostic primaire pour les maladies cardiovasculaires, en particulier la détection non-invasive d'ischémie. Par contre, il existe plusieurs facteurs potentiellement confondants de cette technique, quelques-uns d'ordre méthodologique comme les paramètres de séquençage et d'autres de nature physiologiques qui sont peut compris. En raison des effets causés par le contenu tissulaire d'eau, l'état d'hydratation peut avoir un impact sur l'intensité du signal. Ceci est un des aspects physiologiques en particulier dont nous voulions quantifier l'effet confondant par la manipulation de l'état d'hydratation chez des humains et l'observation des changements de l'intensité du signal dans des images OS-CMR. Méthodes: In vitro: Du sang artériel et veineux de huit porcs a été utilisé pour évaluer la dilution en série du sang et son effet correspondant sur l'intensité du signal de la séquence OS. In vivo: Vingt-deux volontaires en santé ont subi OS-CMR. Les concentrations d'hémoglobine (Hb) ont été mesurées au niveau de base et immédiatement après une l'infusion cristalloïde rapide de 1000 mL de solution Lactate Ringer's (LRS). Les images OS-CMR ont été prises dans une vue mid-ventriculaire court axe. L'intensité du signal myocardique a été mesurée durant une rétention respiratoire volontaire maximale, suite à une période d'hyperventilation de 60 secondes. Les changements dans l'intensité du signal entre le début et la fin de la rétention de la respiration ont été exprimés relativement au niveau de base (% de changement). Résultats: L'infusion a résulté en une diminution significative de l'Hb mesurée (142.5±3.3 vs. 128.8±3.3 g/L; p<0.001), alors que l'IS a augmenté de 3.2±1.2% entre les images du niveau de base en normo- et hypervolémie (p<0.05). L'IS d'hyperventilation ainsi que les changements d'IS induits par l'apnée ont été attenués après hémodilution (p<0.05). L'évaluation quantitative T2* a démontré une corrélation négative entre le temps de T2* et la concentration d'hémoglobine (r=-0.46, p<0.005). Conclusions: Il existe plusieurs éléments confondants de la technique OS-CMR qui requièrent de l'attention et de l'optimisation pour une future implémentation clinique à grande échelle. Le statut d'hydratation en particulier pourrait être un élément confondant dans l'imagerie OS-CMR. L'hypervolémie mène à une augmentation en IS au niveau de base et atténue la réponse IS durant des manoeuvres de respiration vasoactives. Cette atténuation de l'intensité du signal devrait être tenue en compte et corrigée dans l'évaluation clinique d'images OS-CMR.
Resumo:
The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model's key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics.