3 resultados para MCMC METHOD
em Université de Montréal, Canada
Resumo:
Une réconciliation entre un arbre de gènes et un arbre d’espèces décrit une histoire d’évolution des gènes homologues en termes de duplications et pertes de gènes. Pour inférer une réconciliation pour un arbre de gènes et un arbre d’espèces, la parcimonie est généralement utilisée selon le nombre de duplications et/ou de pertes. Les modèles de réconciliation sont basés sur des critères probabilistes ou combinatoires. Le premier article définit un modèle combinatoire simple et général où les duplications et les pertes sont clairement identifiées et la réconciliation parcimonieuse n’est pas la seule considérée. Une architecture de toutes les réconciliations est définie et des algorithmes efficaces (soit de dénombrement, de génération aléatoire et d’exploration) sont développés pour étudier les propriétés combinatoires de l’espace de toutes les réconciliations ou seulement les plus parcimonieuses. Basée sur le processus classique nommé naissance-et-mort, un algorithme qui calcule la vraisemblance d’une réconciliation a récemment été proposé. Le deuxième article utilise cet algorithme avec les outils combinatoires décrits ci-haut pour calculer efficacement (soit approximativement ou exactement) les probabilités postérieures des réconciliations localisées dans le sous-espace considéré. Basé sur des taux réalistes (selon un modèle probabiliste) de duplication et de perte et sur des données réelles/simulées de familles de champignons, nos résultats suggèrent que la masse probabiliste de toute l’espace des réconciliations est principalement localisée autour des réconciliations parcimonieuses. Dans un contexte d’approximation de la probabilité d’une réconciliation, notre approche est une alternative intéressante face aux méthodes MCMC et peut être meilleure qu’une approche sophistiquée, efficace et exacte pour calculer la probabilité d’une réconciliation donnée. Le problème nommé Gene Tree Parsimony (GTP) est d’inférer un arbre d’espèces qui minimise le nombre de duplications et/ou de pertes pour un ensemble d’arbres de gènes. Basé sur une approche qui explore tout l’espace des arbres d’espèces pour les génomes considérés et un calcul efficace des coûts de réconciliation, le troisième article décrit un algorithme de Branch-and-Bound pour résoudre de façon exacte le problème GTP. Lorsque le nombre de taxa est trop grand, notre algorithme peut facilement considérer des relations prédéfinies entre ensembles de taxa. Nous avons testé notre algorithme sur des familles de gènes de 29 eucaryotes.
Resumo:
Les méthodes de Monte Carlo par chaînes de Markov (MCCM) sont des méthodes servant à échantillonner à partir de distributions de probabilité. Ces techniques se basent sur le parcours de chaînes de Markov ayant pour lois stationnaires les distributions à échantillonner. Étant donné leur facilité d’application, elles constituent une des approches les plus utilisées dans la communauté statistique, et tout particulièrement en analyse bayésienne. Ce sont des outils très populaires pour l’échantillonnage de lois de probabilité complexes et/ou en grandes dimensions. Depuis l’apparition de la première méthode MCCM en 1953 (la méthode de Metropolis, voir [10]), l’intérêt pour ces méthodes, ainsi que l’éventail d’algorithmes disponibles ne cessent de s’accroître d’une année à l’autre. Bien que l’algorithme Metropolis-Hastings (voir [8]) puisse être considéré comme l’un des algorithmes de Monte Carlo par chaînes de Markov les plus généraux, il est aussi l’un des plus simples à comprendre et à expliquer, ce qui en fait un algorithme idéal pour débuter. Il a été sujet de développement par plusieurs chercheurs. L’algorithme Metropolis à essais multiples (MTM), introduit dans la littérature statistique par [9], est considéré comme un développement intéressant dans ce domaine, mais malheureusement son implémentation est très coûteuse (en termes de temps). Récemment, un nouvel algorithme a été développé par [1]. Il s’agit de l’algorithme Metropolis à essais multiples revisité (MTM revisité), qui définit la méthode MTM standard mentionnée précédemment dans le cadre de l’algorithme Metropolis-Hastings sur un espace étendu. L’objectif de ce travail est, en premier lieu, de présenter les méthodes MCCM, et par la suite d’étudier et d’analyser les algorithmes Metropolis-Hastings ainsi que le MTM standard afin de permettre aux lecteurs une meilleure compréhension de l’implémentation de ces méthodes. Un deuxième objectif est d’étudier les perspectives ainsi que les inconvénients de l’algorithme MTM revisité afin de voir s’il répond aux attentes de la communauté statistique. Enfin, nous tentons de combattre le problème de sédentarité de l’algorithme MTM revisité, ce qui donne lieu à un tout nouvel algorithme. Ce nouvel algorithme performe bien lorsque le nombre de candidats générés à chaque itérations est petit, mais sa performance se dégrade à mesure que ce nombre de candidats croît.
Resumo:
La régression logistique est un modèle de régression linéaire généralisée (GLM) utilisé pour des variables à expliquer binaires. Le modèle cherche à estimer la probabilité de succès de cette variable par la linéarisation de variables explicatives. Lorsque l’objectif est d’estimer le plus précisément l’impact de différents incitatifs d’une campagne marketing (coefficients de la régression logistique), l’identification de la méthode d’estimation la plus précise est recherchée. Nous comparons, avec la méthode MCMC d’échantillonnage par tranche, différentes densités a priori spécifiées selon différents types de densités, paramètres de centralité et paramètres d’échelle. Ces comparaisons sont appliquées sur des échantillons de différentes tailles et générées par différentes probabilités de succès. L’estimateur du maximum de vraisemblance, la méthode de Gelman et celle de Genkin viennent compléter le comparatif. Nos résultats démontrent que trois méthodes d’estimations obtiennent des estimations qui sont globalement plus précises pour les coefficients de la régression logistique : la méthode MCMC d’échantillonnage par tranche avec une densité a priori normale centrée en 0 de variance 3,125, la méthode MCMC d’échantillonnage par tranche avec une densité Student à 3 degrés de liberté aussi centrée en 0 de variance 3,125 ainsi que la méthode de Gelman avec une densité Cauchy centrée en 0 de paramètre d’échelle 2,5.