6 resultados para Métaheuristique
em Université de Montréal, Canada
Resumo:
La traduction automatique statistique est un domaine très en demande et où les machines sont encore loin de produire des résultats de qualité humaine. La principale méthode utilisée est une traduction linéaire segment par segment d'une phrase, ce qui empêche de changer des parties de la phrase déjà traduites. La recherche pour ce mémoire se base sur l'approche utilisée dans Langlais, Patry et Gotti 2007, qui tente de corriger une traduction complétée en modifiant des segments suivant une fonction à optimiser. Dans un premier temps, l'exploration de nouveaux traits comme un modèle de langue inverse et un modèle de collocation amène une nouvelle dimension à la fonction à optimiser. Dans un second temps, l'utilisation de différentes métaheuristiques, comme les algorithmes gloutons et gloutons randomisés permet l'exploration plus en profondeur de l'espace de recherche et permet une plus grande amélioration de la fonction objectif.
Resumo:
Les microARNs appartiennent à la famille des petits ARNs non-codants et agissent comme inhibiteurs des ARN messagers et/ou de leurs produits protéiques. Les mi- croARNs sont différents des petits ARNs interférants (siARN) car ils atténuent l’ex- pression au lieu de l’éliminer. Dans les dernières années, de nombreux microARNs et leurs cibles ont été découverts chez les mammifères et les plantes. La bioinforma- tique joue un rôle important dans ce domaine, et des programmes informatiques de découvertes de cibles ont été mis à la disposition de la communauté scientifique. Les microARNs peuvent réguler chacun des centaines de gènes, et les profils d’expression de ces derniers peuvent servir comme classificateurs de certains cancers. La modélisation des microARNs artificiels est donc justifiable, où l’un pourrait cibler des oncogènes surexprimés et promouvoir une prolifération de cellules en santé. Un outil pour créer des microARNs artificiels, nommé MultiTar V1.0, a été créé et est disponible comme application web. L’outil se base sur des propriétés structurelles et biochimiques des microARNs et utilise la recherche tabou, une métaheuristique. Il est démontré que des microARNs conçus in-silico peuvent avoir des effets lorsque testés in-vitro. Les sé- quences 3’UTR des gènes E2F1, E2F2 et E2F3 ont été soumises en entrée au programme MultiTar, et les microARNs prédits ont ensuite été testés avec des essais luciférases, des western blots et des courbes de croissance cellulaire. Au moins un microARN artificiel est capable de réguler les trois gènes par essais luciférases, et chacun des microARNs a pu réguler l’expression de E2F1 et E2F2 dans les western blots. Les courbes de crois- sance démontrent que chacun des microARNs interfère avec la croissance cellulaire. Ces résultats ouvrent de nouvelles portes vers des possibilités thérapeutiques.
Resumo:
La compréhension de la structure d’un logiciel est une première étape importante dans la résolution de tâches d’analyse et de maintenance sur celui-ci. En plus des liens définis par la hiérarchie, il existe un autre type de liens entre les éléments du logiciel que nous appelons liens d’adjacence. Une compréhension complète d’un logiciel doit donc tenir compte de tous ces types de liens. Les outils de visualisation sont en général efficaces pour aider un développeur dans sa compréhension d’un logiciel en lui présentant l’information sous forme claire et concise. Cependant, la visualisation simultanée des liens hiérarchiques et d’adjacence peut donner lieu à beaucoup d’encombrement visuel, rendant ainsi ces visualisations peu efficaces pour fournir de l’information utile sur ces liens. Nous proposons dans ce mémoire un outil de visualisation 3D qui permet de représenter à la fois la structure hiérarchique d’un logiciel et les liens d’adjacence existant entre ses éléments. Notre outil utilise trois types de placements différents pour représenter la hiérarchie. Chacun peut supporter l’affichage des liens d’adjacence de manière efficace. Pour représenter les liens d’adjacence, nous proposons une version 3D de la méthode des Hierarchical Edge Bundles. Nous utilisons également un algorithme métaheuristique pour améliorer le placement afin de réduire davantage l’encombrement visuel dans les liens d’adjacence. D’autre part, notre outil offre un ensemble de possibilités d’interaction permettant à un usager de naviguer à travers l’information offerte par notre visualisation. Nos contributions ont été évaluées avec succès sur des systèmes logiciels de grande taille.
Resumo:
Dans ce mémoire, nous étudions un problème de tournées de véhicules dans lequel une flotte privée de véhicules n’a pas la capacité suffisante pour desservir les demandes des clients. Dans un tel cas, on fait appel à un transporteur externe. Ce dernier n’a aucune contrainte de capacité, mais un coût est encouru lorsqu’un client lui est affecté. Il n’est pas nécessaire de mettre tous les véhicules de la flotte privée en service si cette approche se révèle plus économique. L’objectif consiste à minimiser le coût fixe des véhicules, puis le coût variable de transport et le coût chargé par le transporteur externe. Notre travail consiste à appliquer la métaheuristique de recherche adaptative à grand voisinage sur ce problème. Nous comparons nos résultats avec ceux obtenus précédemment avec différentes techniques connues sur les instances de Christofides et celles de Golden.
Resumo:
This paper proposes and investigates a metaheuristic tabu search algorithm (TSA) that generates optimal or near optimal solutions sequences for the feedback length minimization problem (FLMP) associated to a design structure matrix (DSM). The FLMP is a non-linear combinatorial optimization problem, belonging to the NP-hard class, and therefore finding an exact optimal solution is very hard and time consuming, especially on medium and large problem instances. First, we introduce the subject and provide a review of the related literature and problem definitions. Using the tabu search method (TSM) paradigm, this paper presents a new tabu search algorithm that generates optimal or sub-optimal solutions for the feedback length minimization problem, using two different neighborhoods based on swaps of two activities and shifting an activity to a different position. Furthermore, this paper includes numerical results for analyzing the performance of the proposed TSA and for fixing the proper values of its parameters. Then we compare our results on benchmarked problems with those already published in the literature. We conclude that the proposed tabu search algorithm is very promising because it outperforms the existing methods, and because no other tabu search method for the FLMP is reported in the literature. The proposed tabu search algorithm applied to the process layer of the multidimensional design structure matrices proves to be a key optimization method for an optimal product development.
Resumo:
Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète. Elles permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné. L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et automatique pour résoudre des problèmes. L’optimisation globale des complexes miniers vise à établir les mouvements des matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie. Par conséquent, les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers. Ce mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos (2016) pour l’optimisation stochastique des complexes miniers stochastiques. La méthode développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions. Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de la valeur de la fonction économique.