3 resultados para Lithium intercalation
em Université de Montréal, Canada
Resumo:
Nous avons mis au point une approche novatrice pour la synthèse d’un matériau de cathode pour les piles lithium-ion basée sur la décomposition thermique de l’urée. Les hydroxydes de métal mixte (NixMnxCo(1-2x)(OH)2) ont été préparés (x = 0.00 à 0.50) et subséquemment utilisés comme précurseurs à la préparation de l’oxyde de métal mixte (LiNixMnxCo(1-2x)O2). Ces matériaux, ainsi que le phosphate de fer lithié (LiFePO4), sont pressentis comme matériaux de cathode commerciaux pour la prochaine génération de piles lithium-ion. Nous avons également développé un nouveau traitement post-synthèse afin d’améliorer la morphologie des hydroxydes. L’originalité de l’approche basée sur la décomposition thermique de l’urée réside dans l’utilisation inédite des hydroxydes comme précurseurs à la préparation d’oxydes de lithium mixtes par l’intermédiaire d’une technique de précipitation uniforme. De plus, nous proposons de nouvelles techniques de traitement s’adressant aux méthodes de synthèses traditionnelles. Les résultats obtenus par ces deux méthodes sont résumés dans deux articles soumis à des revues scientifiques. Tous les matériaux produits lors de cette recherche ont été analysés par diffraction des rayons X (DRX), microscope électronique à balayage (MEB), analyse thermique gravimétrique (ATG) et ont été caractérisés électrochimiquement. La performance électrochimique (nombre de cycles vs capacité) des matériaux de cathode a été conduite en mode galvanostatique.
Resumo:
Dans cette thèse nous démontrons le travail fait sur deux matériaux de cathodes pour les piles lithium-ion. Dans la première partie, nous avons préparé du phosphate de fer lithié (LiFePO4) par deux méthodes de lithiation présentées dans la littérature qui utilisent du phosphate de fer (FePO4) amorphe comme précurseur. Pour les deux méthodes, le produit obtenu à chaque étape de la synthèse a été analysé par la spectroscopie Mössbauer ainsi que par diffraction des rayons X (DRX) pour mieux comprendre le mécanisme de la réaction. Les résultats de ces analyses ont été publiés dans Journal of Power Sources. Le deuxième matériau de cathode qui a été étudié est le silicate de fer lithié (Li2FeSiO4). Une nouvelle méthode de synthèse a été développée pour obtenir le silicate de fer lithié en utilisant des produits chimiques peu couteux ainsi que de l’équipement de laboratoire de base. Le matériau a été obtenu par une synthèse à l’état solide. Les performances électrochimiques ont été obtenues après une étape de broyage et un dépôt d’une couche de carbone. Un essai a été fait pour synthétiser une version substituée du silicate de fer lithié dans le but d’augmenter les performances électrochimiques de ce matériau.
Resumo:
Dans cette thèse, nous démontrons des travaux sur la synthèse à faible coût des matériaux de cathode et l'anode pour les piles lithium-ion. Pour les cathodes, nous avons utilisé des précurseurs à faible coût pour préparer LiFePO4 et LiFe0.3Mn0.7PO4 en utilisant une méthode hydrothermale. Tout d'abord, des matériaux composites (LiFePO4/C) ont été synthétisés à partir d'un précurseur de Fe2O3 par une procédé hydrothermique pour faire LiFePO4(OH) dans une première étape suivie d'une calcination rapide pour le revêtement de carbone. Deuxièmement, LiFePO4 avec une bonne cristallinité et une grande pureté a été synthétisé en une seule étape, avec Fe2O3 par voie hydrothermale. Troisièmement, LiFe0.3Mn0.7PO4 a été préparé en utilisant Fe2O3 et MnO comme des précurseurs de bas coûts au sein d'une méthode hydrothermale synthétique. Pour les matériaux d'anode, nous avons nos efforts concentré sur un matériau d'anode à faible coût α-Fe2O3 avec deux types de synthèse hydrothermales, une a base de micro-ondes (MAH) l’autre plus conventionnelles (CH). La nouveauté de cette thèse est que pour la première fois le LiFePO4 a été préparé par une méthode hydrothermale en utilisant un précurseur Fe3+ (Fe2O3). Le Fe2O3 est un précurseur à faible coût et en combinant ses coûts avec les conditions de synthèse à basse température nous avons réalisé une réduction considérable des coûts de production pour le LiFePO4, menant ainsi à une meilleure commercialisation du LiFePO4 comme matériaux de cathode dans les piles lithium-ion. Par cette méthode de préparation, le LiFePO4/C procure une capacité de décharge et une stabilité de cycle accrue par rapport une synthétisation par la méthode à l'état solide pour les mêmes précurseurs Les résultats sont résumés dans deux articles qui ont été récemment soumis dans des revues scientifiques.