5 resultados para Linear multivariable systems
em Université de Montréal, Canada
Resumo:
Cette thèse traite de la classification analytique du déploiement de systèmes différentiels linéaires ayant une singularité irrégulière. Elle est composée de deux articles sur le sujet: le premier présente des résultats obtenus lors de l'étude de la confluence de l'équation hypergéométrique et peut être considéré comme un cas particulier du second; le deuxième contient les théorèmes et résultats principaux. Dans les deux articles, nous considérons la confluence de deux points singuliers réguliers en un point singulier irrégulier et nous étudions les conséquences de la divergence des solutions au point singulier irrégulier sur le comportement des solutions du système déployé. Pour ce faire, nous recouvrons un voisinage de l'origine (de manière ramifiée) dans l'espace du paramètre de déploiement $\epsilon$. La monodromie d'une base de solutions bien choisie est directement reliée aux matrices de Stokes déployées. Ces dernières donnent une interprétation géométrique aux matrices de Stokes, incluant le lien (existant au moins pour les cas génériques) entre la divergence des solutions à $\epsilon=0$ et la présence de solutions logarithmiques autour des points singuliers réguliers lors de la résonance. La monodromie d'intégrales premières de systèmes de Riccati correspondants est aussi interprétée en fonction des éléments des matrices de Stokes déployées. De plus, dans le second article, nous donnons le système complet d'invariants analytiques pour le déploiement de systèmes différentiels linéaires $x^2y'=A(x)y$ ayant une singularité irrégulière de rang de Poincaré $1$ à l'origine au-dessus d'un voisinage fixé $\mathbb{D}_r$ dans la variable $x$. Ce système est constitué d'une partie formelle, donnée par des polynômes, et d'une partie analytique, donnée par une classe d'équivalence de matrices de Stokes déployées. Pour chaque valeur du paramètre $\epsilon$ dans un secteur pointé à l'origine d'ouverture plus grande que $2\pi$, nous recouvrons l'espace de la variable, $\mathbb{D}_r$, avec deux secteurs et, au-dessus de chacun, nous choisissons une base de solutions du système déployé. Cette base sert à définir les matrices de Stokes déployées. Finalement, nous prouvons un théorème de réalisation des invariants qui satisfont une condition nécessaire et suffisante, identifiant ainsi l'ensemble des modules.
Resumo:
La thèse est composée d’un chapitre de préliminaires et de deux articles sur le sujet du déploiement de singularités d’équations différentielles ordinaires analytiques dans le plan complexe. L’article Analytic classification of families of linear differential systems unfolding a resonant irregular singularity traite le problème de l’équivalence analytique de familles paramétriques de systèmes linéaires en dimension 2 qui déploient une singularité résonante générique de rang de Poincaré 1 dont la matrice principale est composée d’un seul bloc de Jordan. La question: quand deux telles familles sontelles équivalentes au moyen d’un changement analytique de coordonnées au voisinage d’une singularité? est complètement résolue et l’espace des modules des classes d’équivalence analytiques est décrit en termes d’un ensemble d’invariants formels et d’un invariant analytique, obtenu à partir de la trace de la monodromie. Des déploiements universels sont donnés pour toutes ces singularités. Dans l’article Confluence of singularities of non-linear differential equations via Borel–Laplace transformations on cherche des solutions bornées de systèmes paramétriques des équations non-linéaires de la variété centre de dimension 1 d’une singularité col-noeud déployée dans une famille de champs vectoriels complexes. En général, un système d’ÉDO analytiques avec une singularité double possède une unique solution formelle divergente au voisinage de la singularité, à laquelle on peut associer des vraies solutions sur certains secteurs dans le plan complexe en utilisant les transformations de Borel–Laplace. L’article montre comment généraliser cette méthode et déployer les solutions sectorielles. On construit des solutions de systèmes paramétriques, avec deux singularités régulières déployant une singularité irrégulière double, qui sont bornées sur des domaines «spirals» attachés aux deux points singuliers, et qui, à la limite, convergent vers une paire de solutions sectorielles couvrant un voisinage de la singularité confluente. La méthode apporte une description unifiée pour toutes les valeurs du paramètre.
Resumo:
En écologie, dans le cadre par exemple d’études des services fournis par les écosystèmes, les modélisations descriptive, explicative et prédictive ont toutes trois leur place distincte. Certaines situations bien précises requièrent soit l’un soit l’autre de ces types de modélisation ; le bon choix s’impose afin de pouvoir faire du modèle un usage conforme aux objectifs de l’étude. Dans le cadre de ce travail, nous explorons dans un premier temps le pouvoir explicatif de l’arbre de régression multivariable (ARM). Cette méthode de modélisation est basée sur un algorithme récursif de bipartition et une méthode de rééchantillonage permettant l’élagage du modèle final, qui est un arbre, afin d’obtenir le modèle produisant les meilleures prédictions. Cette analyse asymétrique à deux tableaux permet l’obtention de groupes homogènes d’objets du tableau réponse, les divisions entre les groupes correspondant à des points de coupure des variables du tableau explicatif marquant les changements les plus abrupts de la réponse. Nous démontrons qu’afin de calculer le pouvoir explicatif de l’ARM, on doit définir un coefficient de détermination ajusté dans lequel les degrés de liberté du modèle sont estimés à l’aide d’un algorithme. Cette estimation du coefficient de détermination de la population est pratiquement non biaisée. Puisque l’ARM sous-tend des prémisses de discontinuité alors que l’analyse canonique de redondance (ACR) modélise des gradients linéaires continus, la comparaison de leur pouvoir explicatif respectif permet entre autres de distinguer quel type de patron la réponse suit en fonction des variables explicatives. La comparaison du pouvoir explicatif entre l’ACR et l’ARM a été motivée par l’utilisation extensive de l’ACR afin d’étudier la diversité bêta. Toujours dans une optique explicative, nous définissons une nouvelle procédure appelée l’arbre de régression multivariable en cascade (ARMC) qui permet de construire un modèle tout en imposant un ordre hiérarchique aux hypothèses à l’étude. Cette nouvelle procédure permet d’entreprendre l’étude de l’effet hiérarchisé de deux jeux de variables explicatives, principal et subordonné, puis de calculer leur pouvoir explicatif. L’interprétation du modèle final se fait comme dans une MANOVA hiérarchique. On peut trouver dans les résultats de cette analyse des informations supplémentaires quant aux liens qui existent entre la réponse et les variables explicatives, par exemple des interactions entres les deux jeux explicatifs qui n’étaient pas mises en évidence par l’analyse ARM usuelle. D’autre part, on étudie le pouvoir prédictif des modèles linéaires généralisés en modélisant la biomasse de différentes espèces d’arbre tropicaux en fonction de certaines de leurs mesures allométriques. Plus particulièrement, nous examinons la capacité des structures d’erreur gaussienne et gamma à fournir les prédictions les plus précises. Nous montrons que pour une espèce en particulier, le pouvoir prédictif d’un modèle faisant usage de la structure d’erreur gamma est supérieur. Cette étude s’insère dans un cadre pratique et se veut un exemple pour les gestionnaires voulant estimer précisément la capture du carbone par des plantations d’arbres tropicaux. Nos conclusions pourraient faire partie intégrante d’un programme de réduction des émissions de carbone par les changements d’utilisation des terres.
Resumo:
Part of the research described in this thesis is conducted in collaboration with Centre d' étude et de Recherche sur les Macromolécules (CERM), Université de Liège, Sart-Tilman, Belgium
Resumo:
Tachykinin and opioid peptides play a central role in pain transmission, modulation and inhibition. The treatment of pain is very important in medicine and many studies using NK1 receptor antagonists failed to show significant analgesic effects in humans. Recent investigations suggest that both pronociceptive tachykinins and the analgesic opioid systems are important for normal pain sensation. The analysis of opioid peptides in Tac1-/- spinal cord tissues offers a great opportunity to verify the influence of the tachykinin system on specific opioid peptides. The objectives of this study were to develop a HPLC–MS/MRM assay to quantify targeted peptides in spinal cord tissues. Secondly, we wanted to verify if the Tac1-/- mouse endogenous opioid system is hampered and therefore affect significantly the pain modulatory pathways. Targeted neuropeptides were analyzed by high performance liquid chromatography linear ion trap mass spectrometry. Our results reveal that EM-2, Leu-Enk and Dyn A were down-regulated in Tac1-/- spinal cord tissues. Interestingly, Dyn A was almost 3 fold down-regulated (p < 0.0001). No significant concentration differences were observed in mouse Tac1-/- spinal cords for Met-Enk and CGRP. The analysis of Tac1-/- mouse spinal cords revealed noteworthy decreases of EM-2, Leu-Enk and Dyn A concentrations which strongly suggest a significant impact on the endogenous pain-relieving mechanisms. These observations may have insightful impact on future analgesic drug developments and therapeutic strategies.