8 resultados para Learning Models
em Université de Montréal, Canada
Resumo:
L'apprentissage machine (AM) est un outil important dans le domaine de la recherche d'information musicale (Music Information Retrieval ou MIR). De nombreuses tâches de MIR peuvent être résolues en entraînant un classifieur sur un ensemble de caractéristiques. Pour les tâches de MIR se basant sur l'audio musical, il est possible d'extraire de l'audio les caractéristiques pertinentes à l'aide de méthodes traitement de signal. Toutefois, certains aspects musicaux sont difficiles à extraire à l'aide de simples heuristiques. Afin d'obtenir des caractéristiques plus riches, il est possible d'utiliser l'AM pour apprendre une représentation musicale à partir de l'audio. Ces caractéristiques apprises permettent souvent d'améliorer la performance sur une tâche de MIR donnée. Afin d'apprendre des représentations musicales intéressantes, il est important de considérer les aspects particuliers à l'audio musical dans la conception des modèles d'apprentissage. Vu la structure temporelle et spectrale de l'audio musical, les représentations profondes et multiéchelles sont particulièrement bien conçues pour représenter la musique. Cette thèse porte sur l'apprentissage de représentations de l'audio musical. Des modèles profonds et multiéchelles améliorant l'état de l'art pour des tâches telles que la reconnaissance d'instrument, la reconnaissance de genre et l'étiquetage automatique y sont présentés.
Resumo:
Nous avons développé un jeu sérieux afin d’enseigner aux utilisateurs à dessiner des diagrammes de Lewis. Nous l’avons augmenté d’un environnement pouvant enregistrer des signaux électroencéphalographiques, les expressions faciales, et la pupille d’un utilisateur. Le but de ce travail est de vérifier si l’environnement peut permettre au jeu de s’adapter en temps réel à l’utilisateur grâce à une détection automatique du besoin d’aide de l’utilisateur ainsi que si l’utilisateur est davantage satisfait de son expérience avec l’adaptation. Les résultats démontrent que le système d’adaptation peut détecter le besoin d’aide grâce à deux modèles d’apprentissage machine entraînés différemment, l’un généralisé et l’autre personalisé, avec des performances respectives de 53.4% et 67.5% par rapport à un niveau de chance de 33.3%.
Resumo:
L’observation d’un modèle pratiquant une habileté motrice promeut l’apprentissage de l’habileté en question. Toutefois, peu de chercheurs se sont attardés à étudier les caractéristiques d’un bon modèle et à mettre en évidence les conditions d’observation pouvant optimiser l’apprentissage. Dans les trois études composant cette thèse, nous avons examiné les effets du niveau d’habileté du modèle, de la latéralité du modèle, du point de vue auquel l’observateur est placé, et du mode de présentation de l’information sur l’apprentissage d’une tâche de timing séquentielle composée de quatre segments. Dans la première expérience de la première étude, les participants observaient soit un novice, soit un expert, soit un novice et un expert. Les résultats des tests de rétention et de transfert ont révélé que l’observation d’un novice était moins bénéfique pour l’apprentissage que le fait d’observer un expert ou une combinaison des deux (condition mixte). Par ailleurs, il semblerait que l’observation combinée de modèles novice et expert induise un mouvement plus stable et une meilleure généralisation du timing relatif imposé comparativement aux deux autres conditions. Dans la seconde expérience, nous voulions déterminer si un certain type de performance chez un novice (très variable, avec ou sans amélioration de la performance) dans l’observation d’une condition mixte amenait un meilleur apprentissage de la tâche. Aucune différence significative n’a été observée entre les différents types de modèle novices employés dans l’observation de la condition mixte. Ces résultats suggèrent qu’une observation mixte fournit une représentation précise de ce qu’il faut faire (modèle expert) et que l’apprentissage est d’autant plus amélioré lorsque l’apprenant peut contraster cela avec la performance de modèles ayant moins de succès. Dans notre seconde étude, des participants droitiers devaient observer un modèle à la première ou à la troisième personne. L’observation d’un modèle utilisant la même main préférentielle que soi induit un meilleur apprentissage de la tâche que l’observation d’un modèle dont la dominance latérale est opposée à la sienne, et ce, quel que soit l’angle d’observation. Ce résultat suggère que le réseau d’observation de l’action (AON) est plus sensible à la latéralité du modèle qu’à l’angle de vue de l’observateur. Ainsi, le réseau d’observation de l’action semble lié à des régions sensorimotrices du cerveau qui simulent la programmation motrice comme si le mouvement observé était réalisé par sa propre main dominante. Pour finir, dans la troisième étude, nous nous sommes intéressés à déterminer si le mode de présentation (en direct ou en vidéo) influait sur l’apprentissage par observation et si cet effet est modulé par le point de vue de l’observateur (première ou troisième personne). Pour cela, les participants observaient soit un modèle en direct soit une présentation vidéo du modèle et ceci avec une vue soit à la première soit à la troisième personne. Nos résultats ont révélé que l’observation ne diffère pas significativement selon le type de présentation utilisée ou le point de vue auquel l’observateur est placé. Ces résultats sont contraires aux prédictions découlant des études d’imagerie cérébrale ayant montré une activation plus importante du cortex sensorimoteur lors d’une observation en direct comparée à une observation vidéo et de la première personne comparée à la troisième personne. Dans l’ensemble, nos résultats indiquent que le niveau d’habileté du modèle et sa latéralité sont des déterminants importants de l’apprentissage par observation alors que le point de vue de l’observateur et le moyen de présentation n’ont pas d’effets significatifs sur l’apprentissage d’une tâche motrice. De plus, nos résultats suggèrent que la plus grande activation du réseau d’observation de l’action révélée par les études en imagerie mentale durant l’observation d’une action n’induit pas nécessairement un meilleur apprentissage de la tâche.
Resumo:
Les tendances de la participation à la formation des adultes au Canada n’ont pas évolué depuis des décennies, malgré les nouvelles influences économiques qui ont stimulé l’augmentation et la diversification permanente de la formation des employés et malgré les initiatives plus nombreuses en faveur de l’apprentissage des employés en milieu de travail. Il est donc nécessaire de ne plus se contenter d’étudier les prédicteurs de la formation déjà connus dans les profils des employés et des employeurs. Il est, en revanche, indispensable d’étudier les antécédents de la participation des employés à la formation, y compris les aspects et les étapes du processus qui la précède. Cette étude porte sur les antécédents de la participation des employés aux formations dans un important collège communautaire urbain en Ontario. Afin de préparer le recueil des données, un cadre théorique a été élaboré à partir du concept d’expression de la demande. Ce cadre implique l’existence d’un processus qui comporte plusieurs étapes, au cours desquelles plusieurs intervenants interagissent et dont la formation est susceptible d’être le résultat. Les résultats de l’enquête sur le profil d’apprentissage ont permis de conclure que le comportement des employés et de l’employeur est conforme aux modèles de prédicteurs existants et que les taux et les types de participation étaient similaires aux tendances nationales et internationales. L’analyse des entrevues d’un groupe d’employés atypiques, de leurs superviseurs, ainsi que de représentants du collège et du syndicat, a révélé d’importants thèmes clés : l’expression de la demande n’est pas structurée et elle est communiquée par plusieurs canaux, en excluant parfois les superviseurs. De plus, la place de l’auto évaluation est importante, ainsi que la phase de prise de décision. Ces thèmes ont souligné l’interaction de plusieurs intervenants dans le processus d’expression de la demande d’apprentissage et pendant la prise de décision. L’examen des attentes de chacun de ces intervenants au cours de ce processus nous a permis de découvrir un désir tacite chez les superviseurs et les employés, à savoir que la conversation soit à l’initiative de « l’autre ». Ces thèmes clés ont été ensuite abordés dans une discussion qui a révélé une discordance entre le profil de l’employeur et les profils des employés. Celle-ci se prête à la correction par l’employeur de son profil institutionnel pour l’harmoniser avec le profil dispositionnel des employés et optimiser ainsi vraisemblablement son offre de formation. Ils doivent, pour cela, appliquer un processus plus systématique et plus structuré, doté de meilleurs outils. La discussion a porté finalement sur les effets des motivations économiques sur la participation des employés et a permis de conclure que, bien que les employés ne semblent pas se méfier de l’offre de formation de l’employeur et que celle ci ne semble pas non plus les décourager, des questions de pouvoir sont bel et bien en jeu. Elles se sont principalement manifestées pendant le processus de prise de décision et, à cet égard, les superviseurs comme les employés reconnaissent qu’un processus plus structuré serait bénéfique, puisqu’il atténuerait les problèmes d’asymétrie et d’ambiguïté. Les constatations de cette étude sont pertinentes pour le secteur de la formation des adultes et de la formation en milieu de travail et, plus particulièrement, pour la méthodologie de recherche. Nous avons constaté l’avantage d’une méthodologie à deux volets, à l’écoute de l’employeur et des employés, afin de mieux comprendre la relation entre l’offre de formation et la participation à la formation. La définition des antécédents de la participation sous la forme d’un processus dans lequel plusieurs intervenants remplissent plusieurs rôles a permis de créer un modèle plus détaillé qui servira à la recherche future. Ce dernier a démontré qu’il est indispensable de reconnaître que la prise de décision constitue une étape à part entière, située entre l’expression de la demande et la participation à la formation. Ces constatations ont également révélé qu’il est véritablement indispensable que le secteur de la formation des adultes continue à traiter les questions reliées à la reconnaissance de la formation informelle. Ces conclusions et la discussion sur les constatations clés nous ont inspiré des recommandations à appliquer pour modifier les retombées du processus précédant la participation des employés à la formation. La majorité de ces recommandations ont trait à l’infrastructure de ce processus et ciblent donc principalement l’employeur. Certaines recommandations sont cependant destinées aux syndicats, aux superviseurs et aux employés qui peuvent aider l’employeur à remplir son rôle et favoriser la participation efficace de tous à ce processus. Les recommandations qui précédent impliquent que ce sont les antécédents de la formation qui gagneraient à être plus structurés et non la formation elle même. La structuration de l’infrastructure de l’apprentissage présente cependant des risques à elle seule. En liaison avec ce phénomène, une étude spécifique des effets de la nature, de la qualité et de l’asymétrie de la relation superviseur employé sur la participation des employés à la formation serait bénéfique. Mots clés : formation en entreprise, formation professionnelle continue, antécédents à la participation, employés de soutien
Resumo:
La formation à distance (FAD) est de plus en plus utilisée dans le cadre de la formation des enseignants aux technologies de l’information et de la communication (TIC). Dans les pays en voie de développement, elle permet non seulement de réduire les coûts par rapport à une formation traditionnelle, mais aussi de modéliser des pratiques pédagogiques exemplaires qui permettent de maximiser le recours aux TIC. En ce sens, la formation continue des enseignants aux TIC par des cours à distance qui intègrent des forums de discussion offre plusieurs avantages pour ces pays. L’évaluation des apprentissages réalisés dans les forums reste cependant un problème complexe. Différents modèles et différentes procédures d’évaluation ont été proposés par la littérature, mais aucun n’a encore abordé spécifiquement la culture e-learning des participants telle qu’elle est définie par le modèle IntersTICES (Viens, 2007 ; Viens et Peraya, 2005). L’objectif de notre recherche est l’élaboration d’une grille opérationnelle pour l’analyse de la culture e-learning à partir des contenus de différents forums de discussion utilisés comme activité de formation dans un cours à distance. Pour développer cette grille, nous utiliserons une combinaison de modèles recensés dans la revue de littérature afin de circonscrire les principaux concepts et indicateurs à prendre en compte pour ensuite suivre les procédures relatives à l’analyse de la valeur, une méthodologie qui appelle la production d’un cahier des charges fonctionnel, la production de l’outil, puis sa mise à l’essai auprès d’experts. Cette procédure nous a permis de mettre sur pied une grille optimale, opérationnelle et appuyée par une base théorique et méthodologique solide.
Resumo:
L’objectif de cette thèse par articles est de présenter modestement quelques étapes du parcours qui mènera (on espère) à une solution générale du problème de l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun une différente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte plus général, et dans certains cas elles on tété appliquées ailleurs, mais ceci ne sera pas abordé dans le contexte de cette de thèse. Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike- and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démontrons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand très peu d’exemples étiquetés sont disponibles pour l’entraînement. Partant d’un modèle CPSS, nous construisons ensuite une architecture profonde, la machine de Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de manière à simplifier d’entraînement des machines de Boltzmann profondes qui nécessitent normalement une phase de pré-entraînement glouton pour chaque couche. Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière pratique. Dans le deuxième article, nous revenons au problème d’entraînement joint de machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de modèles, nous introduisons un nouveau critère d’entraînement qui donne naissance aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les MBP-MP sont entraînables en une seule étape et ont un meilleur taux de succès en classification que les MBP classiques. Elles s’entraînent aussi avec des méthodes variationelles standard au lieu de nécessiter un classificateur discriminant pour obtenir un bon taux de succès en classification. Par contre, un des inconvénients de tels modèles est leur incapacité de générer deséchantillons, mais ceci n’est pas trop grave puisque la performance de classification des machines de Boltzmann profondes n’est plus une priorité étant donné les dernières avancées en apprentissage supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont capable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent pas faire, telles que celle de classifier des données incomplètes ou encore celle de combler intelligemment l’information manquante dans ces données incomplètes. Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de transformations importantes du domaine de l’apprentissage à réseaux neuronaux profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par Geoffrey Hinton. Dropout rend possible un entraînement purement supervisé d’architectures de propagation unidirectionnel sans être exposé au danger de sur- entraînement. Le troisième article présenté dans cette thèse introduit une nouvelle fonction d’activation spécialement con ̧cue pour aller avec l’algorithme de Dropout. Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation multi-canal dans un contexte d’apprentissage purement supervisé. Nous démontrons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies par l’utilisation de maxout. Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la transcription d’adresses de maisons à plusieurs chiffres. En combinant maxout avec une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution, nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui des humains sur un ensemble de données coriace constitué de photos prises par les voitures de Google. Ce système a été déployé avec succès chez Google pour lire environ cent million d’adresses de maisons.
Resumo:
Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.
Resumo:
La recherche d'informations s'intéresse, entre autres, à répondre à des questions comme: est-ce qu'un document est pertinent à une requête ? Est-ce que deux requêtes ou deux documents sont similaires ? Comment la similarité entre deux requêtes ou documents peut être utilisée pour améliorer l'estimation de la pertinence ? Pour donner réponse à ces questions, il est nécessaire d'associer chaque document et requête à des représentations interprétables par ordinateur. Une fois ces représentations estimées, la similarité peut correspondre, par exemple, à une distance ou une divergence qui opère dans l'espace de représentation. On admet généralement que la qualité d'une représentation a un impact direct sur l'erreur d'estimation par rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représentations des documents et des requêtes a longtemps été un problème central de la recherche d'informations. Le but de cette thèse est de proposer des nouvelles méthodes pour estimer les représentations des documents et des requêtes, la relation de pertinence entre eux et ainsi modestement avancer l'état de l'art du domaine. Nous présentons quatre articles publiés dans des conférences internationales et un article publié dans un forum d'évaluation. Les deux premiers articles concernent des méthodes qui créent l'espace de représentation selon une connaissance à priori sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci nous amènent à présenter un nouveau modèle de recherche d'informations qui diffère des modèles existants sur le plan théorique et de l'efficacité expérimentale. Les deux derniers articles marquent un changement fondamental dans l'approche de construction des représentations. Ils bénéficient notamment de l'intérêt de recherche dont les techniques d'apprentissage profond par réseaux de neurones, ou deep learning, ont fait récemment l'objet. Ces modèles d'apprentissage élicitent automatiquement les caractéristiques importantes pour la tâche demandée à partir d'une quantité importante de données. Nous nous intéressons à la modélisation des relations sémantiques entre documents et requêtes ainsi qu'entre deux ou plusieurs requêtes. Ces derniers articles marquent les premières applications de l'apprentissage de représentations par réseaux de neurones à la recherche d'informations. Les modèles proposés ont aussi produit une performance améliorée sur des collections de test standard. Nos travaux nous mènent à la conclusion générale suivante: la performance en recherche d'informations pourrait drastiquement être améliorée en se basant sur les approches d'apprentissage de représentations.