4 resultados para Laboratory techniques and procedures
em Université de Montréal, Canada
Resumo:
L’entérotoxine B staphylococcique (SEB) est une toxine entérique hautement résistante à la chaleur et est responsable de plus de 50 % des cas d’intoxication d’origine alimentaire par une entérotoxine. L’objectif principal de ce projet de maîtrise est de développer et valider une méthode basée sur des nouvelles stratégies analytiques permettant la détection et la quantification de SEB dans les matrices alimentaires. Une carte de peptides tryptiques a été produite et 3 peptides tryptiques spécifiques ont été sélectionnés pour servir de peptides témoins à partir des 9 fragments protéolytiques identifiés (couverture de 35 % de la séquence). L’anhydride acétique et la forme deutérée furent utilisés afin de synthétiser des peptides standards marqués avec un isotope léger et lourd. La combinaison de mélanges des deux isotopes à des concentrations molaires différentes fut utilisée afin d’établir la linéarité et les résultats ont démontré que les mesures faites par dilution isotopique combinée au CL-SM/SM respectaient les critères généralement reconnus d’épreuves biologiques avec des valeurs de pente près de 1, des valeurs de R2 supérieure à 0,98 et des coefficients de variation (CV%) inférieurs à 8 %. La précision et l’exactitude de la méthode ont été évaluées à l’aide d’échantillons d’homogénat de viande de poulet dans lesquels SEB a été introduite. SEB a été enrichie à 0,2, 1 et 2 pmol/g. Les résultats analytiques révèlent que la méthode procure une plage d’exactitude de 84,9 à 91,1 %. Dans l’ensemble, les résultats présentés dans ce mémoire démontrent que les méthodes protéomiques peuvent être utilisées efficacement pour détecter et quantifier SEB dans les matrices alimentaires. Mots clés : spectrométrie de masse; marquage isotopique; protéomique quantitative; entérotoxines
Development of new scenario decomposition techniques for linear and nonlinear stochastic programming
Resumo:
Une approche classique pour traiter les problèmes d’optimisation avec incertitude à deux- et multi-étapes est d’utiliser l’analyse par scénario. Pour ce faire, l’incertitude de certaines données du problème est modélisée par vecteurs aléatoires avec des supports finis spécifiques aux étapes. Chacune de ces réalisations représente un scénario. En utilisant des scénarios, il est possible d’étudier des versions plus simples (sous-problèmes) du problème original. Comme technique de décomposition par scénario, l’algorithme de recouvrement progressif est une des méthodes les plus populaires pour résoudre les problèmes de programmation stochastique multi-étapes. Malgré la décomposition complète par scénario, l’efficacité de la méthode du recouvrement progressif est très sensible à certains aspects pratiques, tels que le choix du paramètre de pénalisation et la manipulation du terme quadratique dans la fonction objectif du lagrangien augmenté. Pour le choix du paramètre de pénalisation, nous examinons quelques-unes des méthodes populaires, et nous proposons une nouvelle stratégie adaptive qui vise à mieux suivre le processus de l’algorithme. Des expériences numériques sur des exemples de problèmes stochastiques linéaires multi-étapes suggèrent que la plupart des techniques existantes peuvent présenter une convergence prématurée à une solution sous-optimale ou converger vers la solution optimale, mais avec un taux très lent. En revanche, la nouvelle stratégie paraît robuste et efficace. Elle a convergé vers l’optimalité dans toutes nos expériences et a été la plus rapide dans la plupart des cas. Pour la question de la manipulation du terme quadratique, nous faisons une revue des techniques existantes et nous proposons l’idée de remplacer le terme quadratique par un terme linéaire. Bien que qu’il nous reste encore à tester notre méthode, nous avons l’intuition qu’elle réduira certaines difficultés numériques et théoriques de la méthode de recouvrement progressif.