2 resultados para LSES
em Université de Montréal, Canada
Resumo:
Les cortices sensoriels sont des régions cérébrales essentielles pour la perception. En particulier, le cortex visuel traite l’information visuelle en provenance de la rétine qui transite par le thalamus. Les neurones sont les unités fonctionnelles qui transforment l'information sensorielle en signaux électriques, la transfèrent vers le cortex et l'intègrent. Les neurones du cortex visuel sont spécialisés et analysent différents aspects des stimuli visuels. La force des connections entre les neurones peut être modulée par la persistance de l'activité pré-synaptique et induit une augmentation ou une diminution du signal post-synaptique à long terme. Ces modifications de la connectivité synaptique peuvent induire la réorganisation de la carte corticale, c’est à dire la représentation de ce stimulus et la puissance de son traitement cortical. Cette réorganisation est connue sous le nom de plasticité corticale. Elle est particulièrement active durant la période de développement, mais elle s’observe aussi chez l’adulte, par exemple durant l’apprentissage. Le neurotransmetteur acétylcholine (ACh) est impliqué dans de nombreuses fonctions cognitives telles que l’apprentissage ou l’attention et il est important pour la plasticité corticale. En particulier, les récepteurs nicotiniques et muscariniques du sous-type M1 et M2 sont les récepteurs cholinergiques impliqués dans l’induction de la plasticité corticale. L’objectif principal de la présente thèse est de déterminer les mécanismes de plasticité corticale induits par la stimulation du système cholinergique au niveau du télencéphale basal et de définir les effets sur l’amélioration de la perception sensorielle. Afin d’induire la plasticité corticale, j’ai jumelé des stimulations visuelles à des injections intracorticales d’agoniste cholinergique (carbachol) ou à une stimulation du télencéphale basal (neurones cholinergiques qui innervent le cortex visuel primaire). J'ai analysé les potentiels évoqués visuels (PEVs) dans le cortex visuel primaire des rats pendant 4 à 8 heures après le couplage. Afin de préciser l’action de l’ACh sur l’activité des PEVs dans V1, j’ai injecté individuellement l’antagoniste des récepteurs muscariniques, nicotiniques, α7 ou NMDA avant l’infusion de carbachol. La stimulation du système cholinergique jumelée avec une stimulation visuelle augmente l’amplitude des PEVs durant plus de 8h. Le blocage des récepteurs muscarinique, nicotinique et NMDA abolit complètement cette amélioration, tandis que l’inhibition des récepteurs α7 a induit une augmentation instantanée des PEVs. Ces résultats suggèrent que l'ACh facilite à long terme la réponse aux stimuli visuels et que cette facilitation implique les récepteurs nicotiniques, muscariniques et une interaction avec les récepteur NMDA dans le cortex visuel. Ces mécanismes sont semblables à la potentiation à long-terme, évènement physiologique lié à l’apprentissage. L’étape suivante était d’évaluer si l’effet de l’amplification cholinergique de l’entrée de l’information visuelle résultait non seulement en une modification de l’activité corticale mais aussi de la perception visuelle. J’ai donc mesuré l’amélioration de l’acuité visuelle de rats adultes éveillés exposés durant 10 minutes par jour pendant deux semaines à un stimulus visuel de type «réseau sinusoïdal» couplé à une stimulation électrique du télencéphale basal. L’acuité visuelle a été mesurée avant et après le couplage des stimulations visuelle et cholinergique à l’aide d’une tâche de discrimination visuelle. L’acuité visuelle du rat pour le stimulus d’entrainement a été augmentée après la période d’entrainement. L’augmentation de l’acuité visuelle n’a pas été observée lorsque la stimulation visuelle seule ou celle du télencéphale basal seul, ni lorsque les fibres cholinergiques ont été lésées avant la stimulation visuelle. Une augmentation à long terme de la réactivité corticale du cortex visuel primaire des neurones pyramidaux et des interneurones GABAergiques a été montrée par l’immunoréactivité au c-Fos. Ainsi, lorsque couplé à un entrainement visuel, le système cholinergique améliore les performances visuelles pour l’orientation et ce probablement par l’optimisation du processus d’attention et de plasticité corticale dans l’aire V1. Afin d’étudier les mécanismes pharmacologiques impliqués dans l’amélioration de la perception visuelle, j’ai comparé les PEVs avant et après le couplage de la stimulation visuelle/cholinergique en présence d’agonistes/antagonistes sélectifs. Les injections intracorticales des différents agents pharmacologiques pendant le couplage ont montré que les récepteurs nicotiniques et M1 muscariniques amplifient la réponse corticale tandis que les récepteurs M2 muscariniques inhibent les neurones GABAergiques induisant un effet excitateur. L’infusion d’antagoniste du GABA corrobore l’hypothèse que le système inhibiteur est essentiel pour induire la plasticité corticale. Ces résultats démontrent que l’entrainement visuel jumelé avec la stimulation cholinergique améliore la plasticité corticale et qu’elle est contrôlée par les récepteurs nicotinique et muscariniques M1 et M2. Mes résultats suggèrent que le système cholinergique est un système neuromodulateur qui peut améliorer la perception sensorielle lors d’un apprentissage perceptuel. Les mécanismes d’amélioration perceptuelle induits par l’acétylcholine sont liés aux processus d’attention, de potentialisation à long-terme et de modulation de la balance d’influx excitateur/inhibiteur. En particulier, le couplage de l’activité cholinergique avec une stimulation visuelle augmente le ratio de signal / bruit et ainsi la détection de cibles. L’augmentation de la concentration cholinergique corticale potentialise l’afférence thalamocorticale, ce qui facilite le traitement d’un nouveau stimulus et diminue la signalisation cortico-corticale minimisant ainsi la modulation latérale. Ceci est contrôlé par différents sous-types de récepteurs cholinergiques situés sur les neurones GABAergiques ou glutamatergiques des différentes couches corticales. La présente thèse montre qu’une stimulation électrique dans le télencéphale basal a un effet similaire à l’infusion d’agoniste cholinergique et qu’un couplage de stimulations visuelle et cholinergique induit la plasticité corticale. Ce jumelage répété de stimulations visuelle/cholinergique augmente la capacité de discrimination visuelle et améliore la perception. Cette amélioration est corrélée à une amplification de l’activité neuronale démontrée par immunocytochimie du c-Fos. L’immunocytochimie montre aussi une différence entre l’activité des neurones glutamatergiques et GABAergiques dans les différentes couches corticales. L’injection pharmacologique pendant la stimulation visuelle/cholinergique suggère que les récepteurs nicotiniques, muscariniques M1 peuvent amplifier la réponse excitatrice tandis que les récepteurs M2 contrôlent l’activation GABAergique. Ainsi, le système cholinergique activé au cours du processus visuel induit des mécanismes de plasticité corticale et peut ainsi améliorer la capacité perceptive. De meilleures connaissances sur ces actions ouvrent la possibilité d’accélérer la restauration des fonctions visuelles lors d’un déficit ou d’amplifier la fonction cognitive.
Resumo:
Les dendrites sont essentielles pour la réception et l’intégration des stimuli afférents dans les neurones. De plus en plus d’évidences d’une détérioration dendritique sont associées à une axonopathie dans les maladies neurodégénératives. Le glaucome dont la physiopathologie est caractérisée par une détérioration progressive et irréversible des cellules ganglionnaires de la rétine (CGRs) est la première cause de cécité irréversible dans le monde. Son évolution est associée à un amincissement graduel des axones et à l’atrophie des somas des CGRs. La majorité des études de neuroprotection des neuropathies rétiniennes visent la survie et la protection des somas et des axones. Des études récentes ont démontré des changements dendritiques associés à cette pathologie, toutefois les mécanismes moléculaires les régulant sont méconnus. L’hypothèse principale de ma thèse stipule qu’une lésion axonale entraîne des altérations précoces des structures dendritiques. L’identification de voies de signalisation régulant ces changements permettrait d’élaborer des stratégies de neuroprotection et de rétablir la fonction de ces neurones. Dans la première étude, nous avons examiné l’effet précoce d’une lésion axonale aigüe sur la morphologie dendritique des CGRs in vivo. En utilisant des souris transgéniques exprimant la protéine fluorescente jaune (YFP) soumises à une axotomie, nous avons démontré un rétrécissement de l’arbre dendritique des CGRs et une diminution sélective de l’activité de mTOR avant le début de la mort des CGRs lésées. Aussi nous avons démontré une augmentation de l’expression de la protéine Regulated in development and DNA damage response 2 (REDD2), un régulateur négatif en amont de la protéine mTOR en réponse à la lésion du nerf optique in vivo. Nous avons démontré que la réactivation de mTOR par l’inhibition de l’expression de REDD2 préserve les arbres dendritiques des CGRs adultes. En effet, l’injection de petits ARN d’interférence contre la REDD2 (siREDD2) stimule l’activité de mTOR dans les CGRs lésées et augmente significativement la longueur et la surface dendritique totale. De plus, la rapamycine, un inhibiteur de mTOR, inhibe complètement l’effet du siREDD2 sur la croissance et l’élaboration des dendrites. L’analyse électrophysiologique des CGRs démontre une augmentation de l’excitabilité des CGRs lésées qui est restaurée en présence du siREDD2. Par ailleurs, des données récentes ont mis en évidence l’implication de la neuro-inflammation dans le glaucome, caractérisée par une augmentation de cytokines pro-inflammatoires dont principalement le facteur de nécrose tumorale (TNFα). Ainsi dans la deuxième étude nous avons examiné l’effet du TNF exogène sur la morphologie de l’arbre dendritique des CGRs et commencé l’étude des mécanismes moléculaires sous-jacents à ces changements. Nos résultats démontrent que l’injection de TNF recombinante dans le vitrée induit une rétraction dendritique précoce qui corrèle à une réduction de phospho-S6 suggérant l’implication de mTOR dans ces CGRs lésées. Ainsi, les études présentées dans cette thèse mettent en évidence un nouveau rôle de mTOR dans la stabilité et le maintien des dendrites de neurones rétiniennes adultes. Ces études ont aussi démontré l’effet précoce de stress direct ou indirect, c’est-à-dire l’axotomie et le TNFα respectivement sur la pathologie dendritique et sur leur effet sur la fonction neuronale.