4 resultados para LATTICE-CONSTANT
em Université de Montréal, Canada
Resumo:
Rapport de recherche
Resumo:
Les effets cardiovasculaires des alpha-2 agonistes, particulièrement importants chez les chiens, limitent leur utilisation en pratique vétérinaire. La perfusion à débit constant (PDC) de ces drogues, comme la médétomidine (MED) permettrait un contrôle plus précis de ces effets. Les effets hémodynamiques de plusieurs doses de MED en PDC ont été évalués chez le chien. Lors de cette étude prospective, réalisée en double aveugle, 24 chiens en santé, ont reçu de façon aléatoire une des 6 doses de MED PDC (4 chiens par groupe). Les chiens ont été ventilés mécaniquement pendant une anesthésie minimale standardisée avec de l’isoflurane dans de l’oxygène. Une dose de charge (DC) de médétomidine a été administrée aux doses de 0.2, 0.5, 1.0, 1.7, 4.0 ou 12.0 µg/kg pendant 10 minutes, après laquelle la MED PDC a été injectée à une dose identique à celle de la DC pendant 60 minutes. L’isoflurane a été administré seul pendant une heure après l’administration d’une combinaison d’ISO et de MED PDC pendant 70 minutes. La fréquence cardiaque (FC), la pression artérielle moyenne (PAM) et l’index du débit cardiaque (IC) ont été mesurés. Des prélèvements sanguins ont permis d’évaluer le profil pharmacocinétique. D’après ces études, les effets hémodynamiques de la MED PDC pendant une anesthésie à l’isoflurane ont été doses-dépendants. L’IC a diminué progressivement alors que la dose de MED augmentait avec: 14.9 (12.7), 21.7 (17.9), 27.1 (13.2), 44.2 (9.7), 47.9 (8.1), and 61.2 (14.1) % respectivement. Les quatre doses les plus basses n’ont provoqué que des changements minimes et transitoires de la FC, de la PAM et de l’IC. La pharmacocinétique apparaît clairement dose-dépendante. De nouvelles expériences seront nécessaires afin d’étudier l’utilisation clinique de la MED PDC.
Resumo:
Nous avons investigué, via les simulations de Monte Carlo, les propriétés non-perturbatives du modèle de Higgs abélien en 2+1 dimensions sans et avec le terme de Chern-Simons dans la phase de symétrie brisée, en termes de ses excitations topologiques: vortex et anti-vortex. Le but du présent travail est de rechercher les phases possibles du système dans ce secteur et d'étudier l'effet du terme de Chern-Simons sur le potentiel de confinement induit par les charges externes trouvé par Samuel. Nous avons formulé une description sur réseau du modèle effectif en utilisant une tesselation tétraédrique de l'espace tridimensionnel Euclidien pour générer des boucles de vortex fermées. En présence du terme de Chern-Simons, dans une configuration donnée, nous avons formulé et calculé le nombre d'enlacement entre les différentes boucles de vortex fermées. Nous avons analysé les propriétés du vide et calculé les valeurs moyennes de la boucle de Wilson, de la boucle de Polyakov à différentes températures et de la boucle de 't Hooft en présence du terme de Chern-Simons. En absence du terme de Chern-Simons, en variant la masse des boucles de vortex, nous avons trouvé deux phases distinctes dans le secteur de la symétrie brisée, la phase de Higgs habituelle et une autre phase caractérisée par l'apparition de boucles infinies. D'autre part, nous avons trouvé que la force entre les charges externes est écrantée correpondant à la loi périmètre pour la boucle de Wilson impliquant qu'il n'y a pas de confinement. Cependant, après la transition, nous avons trouvé qu'il existe toujours une portion de charges externes écrantée, mais qu'après une charge critique, l'énergie libre diverge. En présence du terme de Chern-Simons, et dans la limite de constante de couplage faible de Chern-Simons nous avons trouvé que les comportements de la boucle de Wilson et de la boucle de 't Hooft ne changent pas correspondants à une loi périmètre, impliquant qu'il n'y a pas de confinement. De plus, le terme de Chern-Simons ne contribue pas à la boucle de Wilson.
Resumo:
Les modèles sur réseau comme ceux de la percolation, d’Ising et de Potts servent à décrire les transitions de phase en deux dimensions. La recherche de leur solution analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modèles statistiques bidimensionnels sont invariants sous les transformations conformes et la construction de théories des champs conformes rationnelles, limites continues des modèles statistiques, permet un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent cependant que le paradigme des théories des champs conformes rationnelles peut être élargi pour inclure les modèles statistiques avec des matrices de transfert non diagonalisables. Ces modèles seraient alors décrits, dans la limite d’échelle, par des théories des champs logarithmiques et les représentations de l’algèbre de Virasoro intervenant dans la description des observables physiques seraient indécomposables. La matrice de transfert de boucles D_N(λ, u), un élément de l’algèbre de Temperley- Lieb, se manifeste dans les théories physiques à l’aide des représentations de connectivités ρ (link modules). L’espace vectoriel sur lequel agit cette représentation se décompose en secteurs étiquetés par un paramètre physique, le nombre d de défauts. L’action de cette représentation ne peut que diminuer ce nombre ou le laisser constant. La thèse est consacrée à l’identification de la structure de Jordan de D_N(λ, u) dans ces représentations. Le paramètre β = 2 cos λ = −(q + 1/q) fixe la théorie : β = 1 pour la percolation et √2 pour le modèle d’Ising, par exemple. Sur la géométrie du ruban, nous montrons que D_N(λ, u) possède les mêmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous étudions la non diagonalisabilité de F_N à l’aide des divergences de certaines composantes de ses vecteurs propres, qui apparaissent aux valeurs critiques de λ. Nous prouvons dans ρ(D_N(λ, u)) l’existence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d′ lorsque certaines contraintes sur λ, d, d′ et N sont satisfaites. Pour le modèle de polymères denses critique (β = 0) sur le ruban, les valeurs propres de ρ(D_N(λ, u)) étaient connues, mais les dégénérescences conjecturées. En construisant un isomorphisme entre les modules de connectivités et un sous-espace des modules de spins du modèle XXZ en q = i, nous prouvons cette conjecture. Nous montrons aussi que la restriction de l’hamiltonien de boucles à un secteur donné est diagonalisable et trouvons la forme de Jordan exacte de l’hamiltonien XX, non triviale pour N pair seulement. Enfin nous étudions la structure de Jordan de la matrice de transfert T_N(λ, ν) pour des conditions aux frontières périodiques. La matrice T_N(λ, ν) a des blocs de Jordan intrasectoriels et intersectoriels lorsque λ = πa/b, et a, b ∈ Z×. L’approche par F_N admet une généralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excède 2 dans certains cas et peut croître indéfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les représentations de connectivités sur le cylindre et celles du modèle XXZ sont isomorphes sauf pour certaines valeurs précises de q et du paramètre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs généralisés de Jordan de rang 2 et discutons l’existence de blocs de Jordan intrasectoriels de plus haut rang.