3 resultados para Kac-Moody, Álgebras de
em Université de Montréal, Canada
Resumo:
Le sujet principal de ce mémoire est l'étude de la distribution asymptotique de la fonction f_m qui compte le nombre de diviseurs premiers distincts parmi les nombres premiers $p_1,...,p_m$. Au premier chapitre, nous présentons les sept résultats qui seront démontrés au chapitre 4. Parmi ceux-ci figurent l'analogue du théorème d'Erdos-Kac et un résultat sur les grandes déviations. Au second chapitre, nous définissons les espaces de probabilités qui serviront à calculer les probabilités asymptotiques des événements considérés, et éventuellement à calculer les densités qui leur correspondent. Le troisième chapitre est la partie centrale du mémoire. On y définit la promenade aléatoire qui, une fois normalisée, convergera vers le mouvement brownien. De là, découleront les résultats qui formeront la base des démonstrations de ceux chapitre 1.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal