4 resultados para JavaScript (Lenguaje de programación)
em Université de Montréal, Canada
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
La compréhension des objets dans les programmes orientés objet est une tâche impor- tante à la compréhension du code. JavaScript (JS) est un langage orienté-objet dyna- mique, et son dynamisme rend la compréhension du code source très difficile. Dans ce mémoire, nous nous intéressons à l’analyse des objets pour les programmes JS. Notre approche construit de façon automatique un graphe d’objets inspiré du diagramme de classes d’UML à partir d’une exécution concrète d’un programme JS. Le graphe résul- tant montre la structure des objets ainsi que les interactions entre eux. Notre approche utilise une transformation du code source afin de produire cette in- formation au cours de l’exécution. Cette transformation permet de recueillir de l’infor- mation complète au sujet des objets crées ainsi que d’intercepter toutes les modifications de ces objets. À partir de cette information, nous appliquons plusieurs abstractions qui visent à produire une représentation des objets plus compacte et intuitive. Cette approche est implémentée dans l’outil JSTI. Afin d’évaluer l’utilité de l’approche, nous avons mesuré sa performance ainsi que le degré de réduction dû aux abstractions. Nous avons utilisé les dix programmes de réfé- rence de V8 pour cette comparaison. Les résultats montrent que JSTI est assez efficace pour être utilisé en pratique, avec un ralentissement moyen de 14x. De plus, pour 9 des 10 programmes, les graphes sont suffisamment compacts pour être visualisés. Nous avons aussi validé l’approche de façon qualitative en inspectant manuellement les graphes gé- nérés. Ces graphes correspondent généralement très bien au résultat attendu. Mots clés: Analyse de programmes, analyse dynamique, JavaScript, profilage.
Resumo:
L’observation de l’exécution d’applications JavaScript est habituellement réalisée en instrumentant une machine virtuelle (MV) industrielle ou en effectuant une traduction source-à-source ad hoc et complexe. Ce mémoire présente une alternative basée sur la superposition de machines virtuelles. Notre approche consiste à faire une traduction source-à-source d’un programme pendant son exécution pour exposer ses opérations de bas niveau au travers d’un modèle objet flexible. Ces opérations de bas niveau peuvent ensuite être redéfinies pendant l’exécution pour pouvoir en faire l’observation. Pour limiter la pénalité en performance introduite, notre approche exploite les opérations rapides originales de la MV sous-jacente, lorsque cela est possible, et applique les techniques de compilation à-la-volée dans la MV superposée. Notre implémentation, Photon, est en moyenne 19% plus rapide qu’un interprète moderne, et entre 19× et 56× plus lente en moyenne que les compilateurs à-la-volée utilisés dans les navigateurs web populaires. Ce mémoire montre donc que la superposition de machines virtuelles est une technique alternative compétitive à la modification d’un interprète moderne pour JavaScript lorsqu’appliqué à l’observation à l’exécution des opérations sur les objets et des appels de fonction.
Resumo:
En la actualidad, el uso de las tecnologías ha sido primordial para el avance de las sociedades, estas han permitido que personas sin conocimientos informáticos o usuarios llamados “no expertos” se interesen en su uso, razón por la cual los investigadores científicos se han visto en la necesidad de producir estudios que permitan la adaptación de sistemas, a la problemática existente dentro del ámbito informático. Una necesidad recurrente de todo usuario de un sistema es la gestión de la información, la cual se puede administrar por medio de una base de datos y lenguaje específico, como lo es el SQL (Structured Query Language), pero esto obliga al usuario sin conocimientos a acudir a un especialista para su diseño y construcción, lo cual se ve reflejado en costos y métodos complejos, entonces se plantea una pregunta ¿qué hacer cuando los proyectos son pequeñas y los recursos y procesos son limitados? Teniendo como base la investigación realizada por la universidad de Washington[39], donde sintetizan sentencias SQL a partir de ejemplos de entrada y salida, se pretende con esta memoria automatizar el proceso y aplicar una técnica diferente de aprendizaje, para lo cual utiliza una aproximación evolucionista, donde la aplicación de un algoritmo genético adaptado origina sentencias SQL válidas que responden a las condiciones establecidas por los ejemplos de entrada y salida dados por el usuario. Se obtuvo como resultado de la aproximación, una herramienta denominada EvoSQL que fue validada en este estudio. Sobre los 28 ejercicios empleados por la investigación [39], 23 de los cuales se obtuvieron resultados perfectos y 5 ejercicios sin éxito, esto representa un 82.1% de efectividad. Esta efectividad es superior en un 10.7% al establecido por la herramienta desarrollada en [39] SQLSynthesizer y 75% más alto que la herramienta siguiente más próxima Query by Output QBO[31]. El promedio obtenido en la ejecución de cada ejercicio fue de 3 minutos y 11 segundos, este tiempo es superior al establecido por SQLSynthesizer; sin embargo, en la medida un algoritmo genético supone la existencia de fases que amplían los rangos de tiempos, por lo cual el tiempo obtenido es aceptable con relación a las aplicaciones de este tipo. En conclusión y según lo anteriormente expuesto, se obtuvo una herramienta automática con una aproximación evolucionista, con buenos resultados y un proceso simple para el usuario “no experto”.