3 resultados para Ionic conduction in solids
em Université de Montréal, Canada
Resumo:
Le système rénine-angiotensine est impliqué dans le remodelage structurel et électrique caractérisant la fibrillation auriculaire (FA). L’angiotensine II (ANG II) induit le développement de fibrose et d’hypertrophie au niveau des oreillettes, prédisposant à la FA. Or, les mécanismes électrophysiologiques par lesquels l’ANG II pourrait promouvoir la FA sont peu connus. L’objectif de ce projet de recherche est d’évaluer l’effet de l’ANG II sur les courants potassiques et calciques au niveau auriculaire indépendamment du remodelage structurel. Pour ce faire, nous avons utilisé la technique de patch-clamp avec un modèle de souris surexprimant le récepteur de type 1 à l’angiotensine II (AT1R) spécifiquement au niveau cardiaque. Pour distinguer les effets directs de la surexpression d’AT1R des effets induits par le remodelage cardiaque, nous avons étudié des souris âgées de 180 jours, qui présentent du remodelage structurel, et des souris âgées de 50 jours, qui n’en présentent pas. Des études précédentes sur ce modèle ont montré qu’au niveau des myocytes ventriculaires, l’ANG II réduit le courant potassique global (Ipeak) et rectifiant entrant (IK1) ainsi que le courant calcique de type L (ICaL). Ainsi, notre hypothèse est que l’ANG II modulera aussi ces courants au niveau auriculaire, pouvant ainsi augmenter l’hétérogénéité de repolarisation auriculaire et de ce fait le risque de développer et maintenir la FA. Nous avons observé une diminution significative de la densité d’IK1 dans l’oreillette gauche des souris transgéniques sans changement d’Ipeak. De plus, la densité d’ ICaL n’est pas réduite chez les souris transgéniques âgées de 50 jours. En conclusion, l’effet de l’ANG II sur les courants potassiques et calciques semble dépendre de la chambre cardiaque. En effet, nous savions que l’ANGII réduisait Ipeak, IK1 et ICaL au niveau ventriculaire, mais nos résultats ont montré qu’il ne les affectait pas directement au niveau des oreillettes. Ceci suggère des mécanismes de régulation impliquant des voies de signalisation distinctes selon les chambres cardiaques. Enfin, nos résultats montrant l’absence de l’influence directe de la surexpression d’AT1R sur les canaux K+ et Ca2+ au niveau des myocytes auriculaires renforcent l’importance d’approfondir nos connaissances sur les effets de l’angiotensine II sur le développement de la fibrose, sur le remodelage structurel et sur la conduction électrique cardiaque.
Resumo:
Thèse en cotutelle avec Université de Nantes - Pays de La Loire - France (2005-2010)
Resumo:
Cette thèse porte sur le calcul de structures électroniques dans les solides. À l'aide de la théorie de la fonctionnelle de densité, puis de la théorie des perturbations à N-corps, on cherche à calculer la structure de bandes des matériaux de façon aussi précise et efficace que possible. Dans un premier temps, les développements théoriques ayant mené à la théorie de la fonctionnelle de densité (DFT), puis aux équations de Hedin sont présentés. On montre que l'approximation GW constitue une méthode pratique pour calculer la self-énergie, dont les résultats améliorent l'accord de la structure de bandes avec l'expérience par rapport aux calculs DFT. On analyse ensuite la performance des calculs GW dans différents oxydes transparents, soit le ZnO, le SnO2 et le SiO2. Une attention particulière est portée aux modèles de pôle de plasmon, qui permettent d'accélérer grandement les calculs GW en modélisant la matrice diélectrique inverse. Parmi les différents modèles de pôle de plasmon existants, celui de Godby et Needs s'avère être celui qui reproduit le plus fidèlement le calcul complet de la matrice diélectrique inverse dans les matériaux étudiés. La seconde partie de la thèse se concentre sur l'interaction entre les vibrations des atomes du réseau cristallin et les états électroniques. Il est d'abord montré comment le couplage électron-phonon affecte la structure de bandes à température finie et à température nulle, ce qu'on nomme la renormalisation du point zéro (ZPR). On applique ensuite la méthode GW au calcul du couplage électron-phonon dans le diamant. Le ZPR s'avère être fortement amplifié par rapport aux calculs DFT lorsque les corrections GW sont appliquées, améliorant l'accord avec les observations expérimentales.