8 resultados para Invariant fields

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La thèse présente une description géométrique d’un germe de famille générique déployant un champ de vecteurs réel analytique avec un foyer faible à l’origine et son complexifié : le feuilletage holomorphe singulier associé. On montre que deux germes de telles familles sont orbitalement analytiquement équivalents si et seulement si les germes de familles de difféomorphismes déployant la complexification de leurs fonctions de retour de Poincaré sont conjuguées par une conjugaison analytique réelle. Le “caractère réel” de la famille correspond à sa Z2-équivariance dans R^4, et cela s’exprime comme l’invariance du plan réel sous le flot du système laquelle, à son tour, entraîne que l’expansion asymptotique de la fonction de Poincaré est réelle quand le paramètre est réel. Le pullback du plan réel après éclatement par la projection monoidal standard intersecte le feuilletage en une bande de Möbius réelle. La technique d’éclatement des singularités permet aussi de donner une réponse à la question de la “réalisation” d’un germe de famille déployant un germe de difféomorphisme avec un point fixe de multiplicateur égal à −1 et de codimension un comme application de semi-monodromie d’une famille générique déployant un foyer faible d’ordre un. Afin d’étudier l’espace des orbites de l’application de Poincaré, nous utilisons le point de vue de Glutsyuk, puisque la dynamique est linéarisable auprès des points singuliers : pour les valeurs réels du paramètre, notre démarche, classique, utilise une méthode géométrique, soit un changement de coordonée (coordonée “déroulante”) dans lequel la dynamique devient beaucoup plus simple. Mais le prix à payer est que la géométrie locale du plan complexe ambiante devient une surface de Riemann, sur laquelle deux notions de translation sont définies. Après avoir pris le quotient par le relèvement de la dynamique nous obtenons l’espace des orbites, ce qui s’avère être l’union de trois tores complexes plus les points singuliers (l’espace résultant est non-Hausdorff). Les translations, le caractère réel de l’application de Poincaré et le fait que cette application est un carré relient les différentes composantes du “module de Glutsyuk”. Cette propriété implique donc le fait qu’une seule composante de l’invariant Glutsyuk est indépendante.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alors que les hypothèses de valence et de dominance hémisphérique droite ont longtemps été utilisées afin d’expliquer les résultats de recherches portant sur le traitement émotionnel de stimuli verbaux et non-verbaux, la littérature sur le traitement de mots émotionnels est généralement en désaccord avec ces deux hypothèses et semble converger vers celle du décours temporel. Cette dernière hypothèse stipule que le décours temporal lors du traitement de certains aspects du système sémantique est plus lent pour l’hémisphère droit que pour l’hémisphère gauche. L’objectif de cette thèse est d’examiner la façon dont les mots émotionnels sont traités par les hémisphères cérébraux chez des individus jeunes et âgés. À cet effet, la première étude a pour objectif d’évaluer l’hypothèse du décours temporel en examinant les patrons d’activations relatif au traitement de mots émotionnels par les hémisphères gauche et droit en utilisant un paradigme d’amorçage sémantique et une tâche d’évaluation. En accord avec l’hypothèse du décours temporel, les résultats obtenus pour les hommes montrent que l’amorçage débute plus tôt dans l’hémisphère gauche et plus tard dans l’hémisphère droit. Par contre, les résultats obtenus pour les femmes sont plutôt en accord avec l’hypothèse de valence, car les mots à valence positive sont principalement amorcés dans l’hémisphère gauche, alors que les mots à valence négative sont principalement amorcés dans l’hémisphère droit. Puisque les femmes sont considérées plus « émotives » que les hommes, les résultats ainsi obtenus peuvent être la conséquence des effets de la tâche, qui exige une décision explicite au sujet de la cible. La deuxième étude a pour objectif d’examiner la possibilité que la préservation avec l’âge de l’habileté à traiter des mots émotionnels s’exprime par un phénomène compensatoire d’activations bilatérales fréquemment observées chez des individus âgés et maintenant un haut niveau de performance, ce qui est également connu sous le terme de phénomène HAROLD (Hemispheric Asymmetry Reduction in OLDer adults). En comparant les patrons d’amorçages de mots émotionnels auprès de jeunes adultes et d’adultes âgés performants à des niveaux élevés sur le plan comportemental, les résultats révèlent que l’amorçage se manifeste unilatéralement chez les jeunes participants et bilatéralement chez les participants âgés. Par ailleurs, l’amorçage se produit chez les participants âgés avec un léger délai, ce qui peut résulter d’une augmentation des seuils sensoriels chez les participants âgés, qui nécessiteraient alors davantage de temps pour encoder les stimuli et entamer l’activation à travers le réseau sémantique. Ainsi, la performance équivalente au niveau de la précision retrouvée chez les deux groupes de participants et l’amorçage bilatéral observé chez les participants âgés sont en accord avec l’hypothèse de compensation du phénomène HAROLD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée. Elle est applicable directement à des systèmes non-homogènes et non-autonomes sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La thèse est composée d’un chapitre de préliminaires et de deux articles sur le sujet du déploiement de singularités d’équations différentielles ordinaires analytiques dans le plan complexe. L’article Analytic classification of families of linear differential systems unfolding a resonant irregular singularity traite le problème de l’équivalence analytique de familles paramétriques de systèmes linéaires en dimension 2 qui déploient une singularité résonante générique de rang de Poincaré 1 dont la matrice principale est composée d’un seul bloc de Jordan. La question: quand deux telles familles sontelles équivalentes au moyen d’un changement analytique de coordonnées au voisinage d’une singularité? est complètement résolue et l’espace des modules des classes d’équivalence analytiques est décrit en termes d’un ensemble d’invariants formels et d’un invariant analytique, obtenu à partir de la trace de la monodromie. Des déploiements universels sont donnés pour toutes ces singularités. Dans l’article Confluence of singularities of non-linear differential equations via Borel–Laplace transformations on cherche des solutions bornées de systèmes paramétriques des équations non-linéaires de la variété centre de dimension 1 d’une singularité col-noeud déployée dans une famille de champs vectoriels complexes. En général, un système d’ÉDO analytiques avec une singularité double possède une unique solution formelle divergente au voisinage de la singularité, à laquelle on peut associer des vraies solutions sur certains secteurs dans le plan complexe en utilisant les transformations de Borel–Laplace. L’article montre comment généraliser cette méthode et déployer les solutions sectorielles. On construit des solutions de systèmes paramétriques, avec deux singularités régulières déployant une singularité irrégulière double, qui sont bornées sur des domaines «spirals» attachés aux deux points singuliers, et qui, à la limite, convergent vers une paire de solutions sectorielles couvrant un voisinage de la singularité confluente. La méthode apporte une description unifiée pour toutes les valeurs du paramètre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A measure of association is row-size invariant if it is unaffected by the multiplication of all entries in a row of a cross-classification table by a same positive number. It is class-size invariant if it is unaffected by the multiplication of all entries in a class (i.e., a row or a column). We prove that every class-size invariant measure of association as-signs to each m x n cross-classification table a number which depends only on the cross-product ratios of its 2 x 2 subtables. We propose a monotonicity axiom requiring that the degree of association should increase after shifting mass from cells of a table where this mass is below its expected value to cells where it is above .provided that total mass in each class remains constant. We prove that no continuous row-size invariant measure of association is monotonic if m ≥ 4. Keywords: association, contingency tables, margin-free measures, size invariance, monotonicity, transfer principle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette thèse est une exploration de mon processus compositionnel. En tentant de comprendre comment s’organise ma pensée créatrice, j’ai dégagé trois observations : l’organicisme du processus et des œuvres, la notion de mouvement et la relation récursive entre la matière et le compositeur. Ces thèmes m’ont amené à établir un lien épistémologique entre la composition musicale et l’étude des systèmes complexes. Dans ce cadre systémique, j’ai établi que les informations qui motivent mes prises de décision artistiques ont entre elles des ramifications opérationnelles et structurelles qui évoquent une arborescence rhizomatique plutôt qu’une hiérarchie linéaire. La transdisciplinarité propre à la systémique m’a également permis d’introduire des notions provenant d’autres champs de recherche. S’articulant d’emblée avec mon processus compositionnel, ces notions m’ont procuré une vision holistique de ma démarche artistique. Conséquemment, je considère l’acte de composer comme une interaction entre ma conscience et tout ce qui peut émaner de la matière sonore, les deux s’informant l’une et l’autre dans une boucle récursive que je nomme action⟳perception. L’œuvre ainsi produite n’est pas exclusivement tributaire de ma propre volition puisque, au fil du processus, mes décisions opératoires et artistiques sont en grande partie guidées par les propriétés invariantes et les propriétés morphogéniques inhérentes au matériau sonore. Cette approche dynamique n’est possible que si l’interaction avec le compositeur se fait en temps réel, ce que permet la lutherie numérique. Les résultats de mes recherches m’ont guidé dans la composition d’œuvres choisies, autant acousmatiques, mixtes, vidéomusicales que pluridisciplinaires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La multiplication dans le corps de Galois à 2^m éléments (i.e. GF(2^m)) est une opérations très importante pour les applications de la théorie des correcteurs et de la cryptographie. Dans ce mémoire, nous nous intéressons aux réalisations parallèles de multiplicateurs dans GF(2^m) lorsque ce dernier est généré par des trinômes irréductibles. Notre point de départ est le multiplicateur de Montgomery qui calcule A(x)B(x)x^(-u) efficacement, étant donné A(x), B(x) in GF(2^m) pour u choisi judicieusement. Nous étudions ensuite l'algorithme diviser pour régner PCHS qui permet de partitionner les multiplicandes d'un produit dans GF(2^m) lorsque m est impair. Nous l'appliquons pour la partitionnement de A(x) et de B(x) dans la multiplication de Montgomery A(x)B(x)x^(-u) pour GF(2^m) même si m est pair. Basé sur cette nouvelle approche, nous construisons un multiplicateur dans GF(2^m) généré par des trinôme irréductibles. Une nouvelle astuce de réutilisation des résultats intermédiaires nous permet d'éliminer plusieurs portes XOR redondantes. Les complexités de temps (i.e. le délais) et d'espace (i.e. le nombre de portes logiques) du nouveau multiplicateur sont ensuite analysées: 1. Le nouveau multiplicateur demande environ 25% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito lorsque GF(2^m) est généré par des trinômes irréductible et m est suffisamment grand. Le nombre de portes du nouveau multiplicateur est presque identique à celui du multiplicateur de Karatsuba proposé par Elia. 2. Le délai de calcul du nouveau multiplicateur excède celui des meilleurs multiplicateurs d'au plus deux évaluations de portes XOR. 3. Nous determinons le délai et le nombre de portes logiques du nouveau multiplicateur sur les deux corps de Galois recommandés par le National Institute of Standards and Technology (NIST). Nous montrons que notre multiplicateurs contient 15% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito au coût d'un délai d'au plus une porte XOR supplémentaire. De plus, notre multiplicateur a un délai d'une porte XOR moindre que celui du multiplicateur d'Elia au coût d'une augmentation de moins de 1% du nombre total de portes logiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un algorithme permettant de discrétiser les équations aux dérivées partielles (EDP) tout en préservant leurs symétries de Lie est élaboré. Ceci est rendu possible grâce à l'utilisation de dérivées partielles discrètes se transformant comme les dérivées partielles continues sous l'action de groupes de Lie locaux. Dans les applications, beaucoup d'EDP sont invariantes sous l'action de transformations ponctuelles de Lie de dimension infinie qui font partie de ce que l'on désigne comme des pseudo-groupes de Lie. Afin d'étendre la méthode de discrétisation préservant les symétries à ces équations, une discrétisation des pseudo-groupes est proposée. Cette discrétisation a pour effet de transformer les symétries ponctuelles en symétries généralisées dans l'espace discret. Des schémas invariants sont ensuite créés pour un certain nombre d'EDP. Dans tous les cas, des tests numériques montrent que les schémas invariants approximent mieux leur équivalent continu que les différences finies standard.