1 resultado para Intelligent systems. Pipeline networks. Fuzzy logic

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les récents avancements en sciences cognitives, psychologie et neurosciences, ont démontré que les émotions et les processus cognitifs sont intimement reliés. Ce constat a donné lieu à une nouvelle génération de Systèmes Tutoriels Intelligents (STI) dont la logique d’adaptation repose sur une considération de la dimension émotionnelle et affective de l’apprenant. Ces systèmes, connus sous le nom de Systèmes Tutoriels Émotionnellement Intelligents (STEI), cherchent à se doter des facultés des tuteurs humains dans leurs capacités à détecter, comprendre et s’adapter intuitivement en fonction de l’état émotionnel des apprenants. Toutefois, en dépit du nombre important de travaux portant sur la modélisation émotionnelle, les différents résultats empiriques ont démontré que les STEI actuels n’arrivent pas à avoir un impact significatif sur les performances et les réactions émotionnelles des apprenants. Ces limites sont principalement dues à la complexité du concept émotionnel qui rend sa modélisation difficile et son interprétation ambiguë. Dans cette thèse, nous proposons d’augmenter les STEI des indicateurs d’états mentaux d’engagement et de charge mentale de travail. Ces états mentaux ont l’avantage d’englober à la fois une dimension affective et cognitive. Pour cela, nous allons, dans une première partie, présenter une approche de modélisation de ces indicateurs à partir des données de l’activité cérébrale des apprenants. Dans une seconde partie, nous allons intégrer ces modèles dans un STEI capable d’adapter en temps réel le processus d’apprentissage en fonction de ces indicateurs.