23 resultados para Inference module

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of measuring the uncertainty of CGE (or RBC)-type model simulations associated with parameter uncertainty. We describe two approaches for building confidence sets on model endogenous variables. The first one uses a standard Wald-type statistic. The second approach assumes that a confidence set (sampling or Bayesian) is available for the free parameters, from which confidence sets are derived by a projection technique. The latter has two advantages: first, confidence set validity is not affected by model nonlinearities; second, we can easily build simultaneous confidence intervals for an unlimited number of variables. We study conditions under which these confidence sets take the form of intervals and show they can be implemented using standard methods for solving CGE models. We present an application to a CGE model of the Moroccan economy to study the effects of policy-induced increases of transfers from Moroccan expatriates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or \"weak instruments\", so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generated regressors, in order to test hypotheses about the \"structural parameters\" of interest and build confidence sets. The second approach relies on \"generated regressors\", which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and strictly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) \"asymptotically valid\" under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin’s q and to a model of academic performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of multivariate regression (MLR) and seemingly unrelated regressions (SURE) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. in this paper, we propose finite-and large-sample likelihood-based test procedures for possibly non-linear hypotheses on the coefficients of MLR and SURE systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that standard asymptotic theory is not valid or is extremely unreliable in models with identification problems or weak instruments [Dufour (1997, Econometrica), Staiger and Stock (1997, Econometrica), Wang and Zivot (1998, Econometrica), Stock and Wright (2000, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. One possible way out consists here in using a variant of the Anderson-Rubin (1949, Ann. Math. Stat.) procedure. The latter, however, allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, which in general does not allow for individual coefficients. This problem may in principle be overcome by using projection techniques [Dufour (1997, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. AR-types are emphasized because they are robust to both weak instruments and instrument exclusion. However, these techniques can be implemented only by using costly numerical techniques. In this paper, we provide a complete analytic solution to the problem of building projection-based confidence sets from Anderson-Rubin-type confidence sets. The latter involves the geometric properties of “quadrics” and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are required for building the confidence intervals. We also study by simulation how “conservative” projection-based confidence sets are. Finally, we illustrate the methods proposed by applying them to three different examples: the relationship between trade and growth in a cross-section of countries, returns to education, and a study of production functions in the U.S. economy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose methods for testing hypotheses of non-causality at various horizons, as defined in Dufour and Renault (1998, Econometrica). We study in detail the case of VAR models and we propose linear methods based on running vector autoregressions at different horizons. While the hypotheses considered are nonlinear, the proposed methods only require linear regression techniques as well as standard Gaussian asymptotic distributional theory. Bootstrap procedures are also considered. For the case of integrated processes, we propose extended regression methods that avoid nonstandard asymptotics. The methods are applied to a VAR model of the U.S. economy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'amélioration de la maitrise du français langue première chez les élèves du primaire au Québec dépend de plusieurs facteurs. L'enseignant peut jouer un rôle dans ce processus, sa formation universitaire lui fournissant les connaissances nécessaires afin d'encadrer le développement des compétences langagières de l'élève. Une de ces compétences joue un rôle privilégié dans l'utilisation et la maitrise de la langue, il s'agit de la compétence lexicale, la capacité à comprendre et à utiliser les unités du lexique, aussi bien à l'oral qu'à l'écrit. Afin d'encadrer le développement de la compétence lexicale en français langue première des élèves du primaire, les enseignants doivent eux-mêmes posséder un bon niveau de compétence lexicale, mais aussi détenir un certain nombre de connaissances sur le fonctionnement du lexique lui-même, c'est-à-dire des connaissances métalexicales. Le référentiel québécois de la profession enseignante (MEQ, 2001b) ne détaille pas les connaissances métalexicales que doit posséder l'enseignant pour mener les tâches associées à ses activités d'enseignement/apprentissage du lexique. En outre, la plupart des universités québécoises n'offrent pas de cours dédiés explicitement à la didactique du lexique. Pourtant, ce sont dans les cours de didactique que sont dispensées les connaissances théoriques et pratiques nécessaires au futur enseignant pour assumer les tâches de planification et de pilotage des activités d'apprentissage et d'évaluation des compétences des élèves. La relative absence de cours de didactique du lexique en formation initiale pourrait s'expliquer par le fait qu'il s'agit d'une discipline encore jeune dont les fondements théoriques et pratiques sont en cours de développement. Cette thèse en didactique du français langue première s’intéresse donc aux contenus linguistiques de référence de la didactique du lexique, ainsi qu’à la formation des maitres au primaire dans cette même discipline. Le travail de recherche effectué afin de tenter de remédier au problème soulevé a permis la réalisation de deux objectifs complémentaires. Le premier a consisté en la construction d’une ontologie des savoirs lexicologiques, qui permet de représenter à l’intérieur d’une hiérarchie de notions l’ensemble des connaissances disciplinaires de référence de la didactique du lexique. Cette représentation a ensuite été utilisée pour spécifier et structurer les contenus d’un module de cours en didactique du lexique visant le développement des connaissances métalexicales chez les futurs enseignants du primaire au Québec. L’ontologie et le module de cours produits ont été évalués et validés par des experts de chacun des domaines concernés. L’évaluation de l’ontologie a permis de vérifier la méthode de construction de celle-ci, ainsi que différents aspects relatifs à la structuration des concepts dans l’ontologie. L’évaluation du module de cours a quant à elle montré que les contenus de cours étaient pertinents, les méthodes pédagogiques employées appropriées et le matériel de cours développé bien conçu. Cela nous permet d'affirmer que le module de cours en didactique du lexique se présente comme un apport intéressant à la formation des futurs enseignants du primaire en français langue première au Québec. La recherche dans son ensemble présente enfin une contribution pertinente à la didactique du lexique, son caractère original résidant entre autres dans le fait d’avoir développé un mécanisme d’exploitation d’une base de connaissances (ontologie des savoirs lexicologiques) pour la conception didactique (module de cours en didactique du lexique).