2 resultados para Human engineering.
em Université de Montréal, Canada
Resumo:
Alors que l’Imagerie par résonance magnétique (IRM) permet d’obtenir un large éventail de données anatomiques et fonctionnelles, les scanneurs cliniques sont généralement restreints à l’utilisation du proton pour leurs images et leurs applications spectroscopiques. Le phosphore jouant un rôle prépondérant dans le métabolisme énergétique, l’utilisation de cet atome en spectroscopie RM présente un énorme avantage dans l’observation du corps humain. Cela représente un certain nombre de déEis techniques à relever dus à la faible concentration de phosphore et sa fréquence de résonance différente. L’objectif de ce projet a été de développer la capacité à réaliser des expériences de spectroscopie phosphore sur un scanneur IRM clinique de 3 Tesla. Nous présentons ici les différentes étapes nécessaires à la conception et la validation d’une antenne IRM syntonisée à la fréquence du phosphore. Nous présentons aussi l’information relative à réalisation de fantômes utilisés dans les tests de validation et la calibration. Finalement, nous présentons les résultats préliminaires d’acquisitions spectroscopiques sur un muscle humain permettant d’identiEier les différents métabolites phosphorylés à haute énergie. Ces résultats s’inscrivent dans un projet de plus grande envergure où les impacts des changements du métabolisme énergétique sont étudiés en relation avec l’âge et les pathologies.
Resumo:
There are many ways to generate geometrical models for numerical simulation, and most of them start with a segmentation step to extract the boundaries of the regions of interest. This paper presents an algorithm to generate a patient-specific three-dimensional geometric model, based on a tetrahedral mesh, without an initial extraction of contours from the volumetric data. Using the information directly available in the data, such as gray levels, we built a metric to drive a mesh adaptation process. The metric is used to specify the size and orientation of the tetrahedral elements everywhere in the mesh. Our method, which produces anisotropic meshes, gives good results with synthetic and real MRI data. The resulting model quality has been evaluated qualitatively and quantitatively by comparing it with an analytical solution and with a segmentation made by an expert. Results show that our method gives, in 90% of the cases, as good or better meshes as a similar isotropic method, based on the accuracy of the volume reconstruction for a given mesh size. Moreover, a comparison of the Hausdorff distances between adapted meshes of both methods and ground-truth volumes shows that our method decreases reconstruction errors faster. Copyright © 2015 John Wiley & Sons, Ltd.