6 resultados para Horizontal Curve
em Université de Montréal, Canada
Resumo:
In this paper, we use identification-robust methods to assess the empirical adequacy of a New Keynesian Phillips Curve (NKPC) equation. We focus on the Gali and Gertler’s (1999) specification, on both U.S. and Canadian data. Two variants of the model are studied: one based on a rationalexpectations assumption, and a modification to the latter which consists in using survey data on inflation expectations. The results based on these two specifications exhibit sharp differences concerning: (i) identification difficulties, (ii) backward-looking behavior, and (ii) the frequency of price adjustments. Overall, we find that there is some support for the hybrid NKPC for the U.S., whereas the model is not suited to Canada. Our findings underscore the need for employing identificationrobust inference methods in the estimation of expectations-based dynamic macroeconomic relations.
Resumo:
Bien que ce soit un procédé industriel répandu, les films de copolymères à blocs préparés par trempage (« dip-coating ») sont moins étudiés que ceux obtenus par tournette (« spin-coating »). Pourtant, il est possible grâce à cette technique de contrôler précisément les caractéristiques de ces films. Au-delà de la méthode de fabrication, la capacité de modifier la morphologie des films trempés à l’aide d’autres facteurs externes est un enjeu primordial pour leur utilisation dans les nanotechnologies. Nous avons choisi, ici, d’étudier l’influence d’une petite molécule sur la morphologie de films supramoléculaires réalisés par « dip-coating » à partir de solutions de poly(styrène-b-4-vinyl pyridine) (PS-P4VP) dans le tétrahydrofurane (THF). En présence de 1-naphtol (NOH) et d’1-acide napthoïque (NCOOH), qui se complexent par pont hydrogène au bloc P4VP, ces films donnent, respectivement, une morphologie en nodules (sphères) et en stries (cylindres horizontaux). Des études par spectroscopie infrarouge ont permis de mesurer la quantité de petite molécule dans ces films minces, qui varie avec la vitesse de retrait mais qui s’avère être identique pour les deux petites molécules, à une vitesse de retrait donnée. Cependant, des études thermiques ont montré qu’une faible fraction de petite molécule est dispersée dans le PS (davantage de NOH que de NCOOH à cause de la plus faible liaison hydrogène du premier). La vitesse de retrait est un paramètre clé permettant de contrôler à la fois l’épaisseur et la composition du film supramoléculaire. L’évolution de l’épaisseur peut être modélisée par deux régimes récemment découverts. Aux faibles vitesses, l’épaisseur décroît (régime de capillarité), atteint un minimum, puis augmente aux vitesses plus élevées (régime de drainage). La quantité de petite molécule augmente aux faibles vitesses pour atteindre un plateau correspondant à la composition de la solution aux vitesses les plus élevées. Des changements de morphologie, à la fois liés à l’épaisseur et à la quantité de petite molécule, sont alors observés lorsque la vitesse de retrait est modifiée. Le choix du solvant est aussi primordial dans le procédé de « dip-coating » et a été étudié en utilisant le chloroforme, qui est un bon solvant pour les deux blocs. Il s’avère qu’à la fois la composition ainsi que la morphologie des films de PS-P4VP complexés sont différentes par rapport aux expériences réalisées dans le THF. Premièrement, la quantité de petite molécule reste constante avec la vitesse de retrait mais les films sont plus riches en NCOOH qu’en NOH. Deuxièmement, la morphologie des films contenant du NOH présente des stries ainsi que des lamelles à plat, tandis que seules ces dernières sont observables pour le NCOOH. Ce comportement est essentiellement dû à la quantité différente de petite molécule modulée par leur force de complexation différente avec le P4VP dans le chloroforme. Enfin, ces films ont été utilisés pour l’adsorption contrôlée de nanoparticules d’or afin de guider leur organisation sur des surfaces recouvertes de PS-P4VP. Avant de servir comme gabarits, un recuit en vapeurs de solvant permet soit d’améliorer l’ordre à longue distance des nodules de P4VP, soit de modifier la morphologie des films selon le solvant utilisé (THF ou chloroforme). Ils peuvent être ensuite exposés à une solution de nanoparticules d’or de 15 nm de diamètre qui permet leur adsorption sélective sur les nodules (ou stries) de P4VP.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.
Resumo:
Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.
Resumo:
Scoliosis treatment strategy is generally chosen according to the severity and type of the spinal curve. Currently, the curve type is determined from X-rays whose acquisition can be harmful for the patient. We propose in this paper a system that can predict the scoliosis curve type based on the analysis of the surface of the trunk. The latter is acquired and reconstructed in 3D using a non invasive multi-head digitizing system. The deformity is described by the back surface rotation, measured on several cross-sections of the trunk. A classifier composed of three support vector machines was trained and tested using the data of 97 patients with scoliosis. A prediction rate of 72.2% was obtained, showing that the use of the trunk surface for a high-level scoliosis classification is feasible and promising.