4 resultados para Hochschild Cohomology
em Université de Montréal, Canada
Resumo:
Ce mémoire a deux objectifs principaux. Premièrement de développer et interpréter les groupes de cohomologie de Hochschild de basse dimension et deuxièmement de borner la dimension cohomologique des k-algèbres par dessous; montrant que presque aucune k-algèbre commutative est quasi-libre.
Resumo:
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0. On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider. On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Cette thèse s'intéresse à la cohomologie de fibrés en droite sur le fibré cotangent de variétés projectives. Plus précisément, pour $G$ un groupe algébrique simple, connexe et simplement connexe, $P$ un sous-groupe maximal de $G$ et $\omega$ un générateur dominant du groupe de caractères de $P$, on cherche à comprendre les groupes de cohomologie $H^i(T^*(G/P),\mathcal{L})$ où $\mathcal{L}$ est le faisceau des sections d'un fibré en droite sur $T^*(G/P)$. Sous certaines conditions, nous allons montrer qu'il existe un isomorphisme, à graduation près, entre $H^i(T^*(G/P),\mathcal{L})$ et $H^i(T^*(G/P),\mathcal{L}^{\vee})$ Après avoir travaillé dans un contexte théorique, nous nous intéresserons à certains sous-groupes paraboliques en lien avec les orbites nilpotentes. Dans ce cas, l'algèbre de Lie du radical unipotent de $P$, que nous noterons $\nLie$, a une structure d'espace vectoriel préhomogène. Nous pourrons alors déterminer quels cas vérifient les hypothèses nécessaires à la preuve de l'isomorphisme en montrant l'existence d'un $P$-covariant $f$ dans $\comp[\nLie]$ et en étudiant ses propriétés. Nous nous intéresserons ensuite aux singularités de la variété affine $V(f)$. Nous serons en mesure de montrer que sa normalisation est à singularités rationnelles.