2 resultados para Hierarchical partitioning

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’annotation en rôles sémantiques est une tâche qui permet d’attribuer des étiquettes de rôles telles que Agent, Patient, Instrument, Lieu, Destination etc. aux différents participants actants ou circonstants (arguments ou adjoints) d’une lexie prédicative. Cette tâche nécessite des ressources lexicales riches ou des corpus importants contenant des phrases annotées manuellement par des linguistes sur lesquels peuvent s’appuyer certaines approches d’automatisation (statistiques ou apprentissage machine). Les travaux antérieurs dans ce domaine ont porté essentiellement sur la langue anglaise qui dispose de ressources riches, telles que PropBank, VerbNet et FrameNet, qui ont servi à alimenter les systèmes d’annotation automatisés. L’annotation dans d’autres langues, pour lesquelles on ne dispose pas d’un corpus annoté manuellement, repose souvent sur le FrameNet anglais. Une ressource telle que FrameNet de l’anglais est plus que nécessaire pour les systèmes d’annotation automatisé et l’annotation manuelle de milliers de phrases par des linguistes est une tâche fastidieuse et exigeante en temps. Nous avons proposé dans cette thèse un système automatique pour aider les linguistes dans cette tâche qui pourraient alors se limiter à la validation des annotations proposées par le système. Dans notre travail, nous ne considérons que les verbes qui sont plus susceptibles que les noms d’être accompagnés par des actants réalisés dans les phrases. Ces verbes concernent les termes de spécialité d’informatique et d’Internet (ex. accéder, configurer, naviguer, télécharger) dont la structure actancielle est enrichie manuellement par des rôles sémantiques. La structure actancielle des lexies verbales est décrite selon les principes de la Lexicologie Explicative et Combinatoire, LEC de Mel’čuk et fait appel partiellement (en ce qui concerne les rôles sémantiques) à la notion de Frame Element tel que décrit dans la théorie Frame Semantics (FS) de Fillmore. Ces deux théories ont ceci de commun qu’elles mènent toutes les deux à la construction de dictionnaires différents de ceux issus des approches traditionnelles. Les lexies verbales d’informatique et d’Internet qui ont été annotées manuellement dans plusieurs contextes constituent notre corpus spécialisé. Notre système qui attribue automatiquement des rôles sémantiques aux actants est basé sur des règles ou classificateurs entraînés sur plus de 2300 contextes. Nous sommes limités à une liste de rôles restreinte car certains rôles dans notre corpus n’ont pas assez d’exemples annotés manuellement. Dans notre système, nous n’avons traité que les rôles Patient, Agent et Destination dont le nombre d’exemple est supérieur à 300. Nous avons crée une classe que nous avons nommé Autre où nous avons rassemblé les autres rôles dont le nombre d’exemples annotés est inférieur à 100. Nous avons subdivisé la tâche d’annotation en sous-tâches : identifier les participants actants et circonstants et attribuer des rôles sémantiques uniquement aux actants qui contribuent au sens de la lexie verbale. Nous avons soumis les phrases de notre corpus à l’analyseur syntaxique Syntex afin d’extraire les informations syntaxiques qui décrivent les différents participants d’une lexie verbale dans une phrase. Ces informations ont servi de traits (features) dans notre modèle d’apprentissage. Nous avons proposé deux techniques pour l’identification des participants : une technique à base de règles où nous avons extrait une trentaine de règles et une autre technique basée sur l’apprentissage machine. Ces mêmes techniques ont été utilisées pour la tâche de distinguer les actants des circonstants. Nous avons proposé pour la tâche d’attribuer des rôles sémantiques aux actants, une méthode de partitionnement (clustering) semi supervisé des instances que nous avons comparée à la méthode de classification de rôles sémantiques. Nous avons utilisé CHAMÉLÉON, un algorithme hiérarchique ascendant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'objectif de cette thèse est de présenter différentes applications du programme de recherche de calcul conditionnel distribué. On espère que ces applications, ainsi que la théorie présentée ici, mènera à une solution générale du problème d'intelligence artificielle, en particulier en ce qui a trait à la nécessité d'efficience. La vision du calcul conditionnel distribué consiste à accélérer l'évaluation et l'entraînement de modèles profonds, ce qui est très différent de l'objectif usuel d'améliorer sa capacité de généralisation et d'optimisation. Le travail présenté ici a des liens étroits avec les modèles de type mélange d'experts. Dans le chapitre 2, nous présentons un nouvel algorithme d'apprentissage profond qui utilise une forme simple d'apprentissage par renforcement sur un modèle d'arbre de décisions à base de réseau de neurones. Nous démontrons la nécessité d'une contrainte d'équilibre pour maintenir la distribution d'exemples aux experts uniforme et empêcher les monopoles. Pour rendre le calcul efficient, l'entrainement et l'évaluation sont contraints à être éparse en utilisant un routeur échantillonnant des experts d'une distribution multinomiale étant donné un exemple. Dans le chapitre 3, nous présentons un nouveau modèle profond constitué d'une représentation éparse divisée en segments d'experts. Un modèle de langue à base de réseau de neurones est construit à partir des transformations éparses entre ces segments. L'opération éparse par bloc est implémentée pour utilisation sur des cartes graphiques. Sa vitesse est comparée à deux opérations denses du même calibre pour démontrer le gain réel de calcul qui peut être obtenu. Un modèle profond utilisant des opérations éparses contrôlées par un routeur distinct des experts est entraîné sur un ensemble de données d'un milliard de mots. Un nouvel algorithme de partitionnement de données est appliqué sur un ensemble de mots pour hiérarchiser la couche de sortie d'un modèle de langage, la rendant ainsi beaucoup plus efficiente. Le travail présenté dans cette thèse est au centre de la vision de calcul conditionnel distribué émis par Yoshua Bengio. Elle tente d'appliquer la recherche dans le domaine des mélanges d'experts aux modèles profonds pour améliorer leur vitesse ainsi que leur capacité d'optimisation. Nous croyons que la théorie et les expériences de cette thèse sont une étape importante sur la voie du calcul conditionnel distribué car elle cadre bien le problème, surtout en ce qui concerne la compétitivité des systèmes d'experts.