18 resultados para Hessian fly.
em Université de Montréal, Canada
Resumo:
Travail créatif / Creative Work
Resumo:
Simuler efficacement l'éclairage global est l'un des problèmes ouverts les plus importants en infographie. Calculer avec précision les effets de l'éclairage indirect, causés par des rebonds secondaires de la lumière sur des surfaces d'une scène 3D, est généralement un processus coûteux et souvent résolu en utilisant des algorithmes tels que le path tracing ou photon mapping. Ces techniquesrésolvent numériquement l'équation du rendu en utilisant un lancer de rayons Monte Carlo. Ward et al. ont proposé une technique nommée irradiance caching afin d'accélérer les techniques précédentes lors du calcul de la composante indirecte de l'éclairage global sur les surfaces diffuses. Krivanek a étendu l'approche de Ward et Heckbert pour traiter le cas plus complexe des surfaces spéculaires, en introduisant une approche nommée radiance caching. Jarosz et al. et Schwarzhaupt et al. ont proposé un modèle utilisant le hessien et l'information de visibilité pour raffiner le positionnement des points de la cache dans la scène, raffiner de manière significative la qualité et la performance des approches précédentes. Dans ce mémoire, nous avons étendu les approches introduites dans les travaux précédents au problème du radiance caching pour améliorer le positionnement des éléments de la cache. Nous avons aussi découvert un problème important négligé dans les travaux précédents en raison du choix des scènes de test. Nous avons fait une étude préliminaire sur ce problème et nous avons trouvé deux solutions potentielles qui méritent une recherche plus approfondie.
Resumo:
Les langages de programmation typés dynamiquement tels que JavaScript et Python repoussent la vérification de typage jusqu’au moment de l’exécution. Afin d’optimiser la performance de ces langages, les implémentations de machines virtuelles pour langages dynamiques doivent tenter d’éliminer les tests de typage dynamiques redondants. Cela se fait habituellement en utilisant une analyse d’inférence de types. Cependant, les analyses de ce genre sont souvent coûteuses et impliquent des compromis entre le temps de compilation et la précision des résultats obtenus. Ceci a conduit à la conception d’architectures de VM de plus en plus complexes. Nous proposons le versionnement paresseux de blocs de base, une technique de compilation à la volée simple qui élimine efficacement les tests de typage dynamiques redondants sur les chemins d’exécution critiques. Cette nouvelle approche génère paresseusement des versions spécialisées des blocs de base tout en propageant de l’information de typage contextualisée. Notre technique ne nécessite pas l’utilisation d’analyses de programme coûteuses, n’est pas contrainte par les limitations de précision des analyses d’inférence de types traditionnelles et évite la complexité des techniques d’optimisation spéculatives. Trois extensions sont apportées au versionnement de blocs de base afin de lui donner des capacités d’optimisation interprocédurale. Une première extension lui donne la possibilité de joindre des informations de typage aux propriétés des objets et aux variables globales. Puis, la spécialisation de points d’entrée lui permet de passer de l’information de typage des fonctions appellantes aux fonctions appellées. Finalement, la spécialisation des continuations d’appels permet de transmettre le type des valeurs de retour des fonctions appellées aux appellants sans coût dynamique. Nous démontrons empiriquement que ces extensions permettent au versionnement de blocs de base d’éliminer plus de tests de typage dynamiques que toute analyse d’inférence de typage statique.
Resumo:
La première augmentation de la longévité en laboratoire fût observée à la suite d’une intervention nutritionnelle consistant en une réduction de l’apport alimentaire chez le rat. Plus tard, ce phénomène a été reproduit dans de très nombreuses espèces et référé en tant que restriction calorique. Le développement des techniques de biologie moléculaire moderne a permis de montrer dans des organismes modèles simples que cette flexibilité du processus de vieillissement était régulée par des facteurs génétiques. De fait, plusieurs mécanismes cellulaires ont alors pu être identifiés comme responsables de ce contrôle du vieillissement. Ces voies de régulation ont révélées être conservées entre les espèces, depuis les levures jusqu’aux organismes multicellulaires tels que le nématode, la mouche ou la souris, suggérant l’existence d’un programme universel de vieillissement dans le vivant. La levure s’est avéré à plusieurs reprises être un modèle puissant et fiable pour la découverte de gènes impliqués dans ce phénomène. Mon étude a consisté au développement d’un nouveau modèle unicellulaire d’étude du vieillissement à travers l’espèce Schizosaccharomyces pombe appelée aussi levure à fission. La première étape de mon travail a montré que les voies de détection des nutriments gouvernées par la sérine/thréonine protéine kinase A (Pka1) et la sérine/thréonine kinase Sck2 contrôlent le vieillissement chronologique de ces cellules comme il était connu dans la levure Saccharomyces cerevisiae. Ceci permit de valider l’utilisation de la levure à fission pour l’étude du vieillissement. Ensuite, nous avons analysé plus en détail l’effet pro-vieillissement du glucose en étudiant le rôle de sa détection par le récepteur membranaire Git3 couplé à la protéine G (Gpa2) en amont de la kinase Pka1. La perte du signal du glucose par la délétion de Git3 imite partiellement l’effet d’augmentation de longévité obtenu par baisse de la concentration en glucose dans le milieu. De plus, l’effet néfaste du signal du glucose est maintenu en absence de tout métabolisme du glucose suite à la mutation des hexokinases, premières enzymes de la glycolyse. L’ensemble de ces résultats suggèrent que la signalisation du glucose est prédominante sur son métabolisme pour son effet pro-vieillissement. D’autre part, à la fois la suppression de cette signalisation et la baisse de niveau de glucose disponible allongent la durée de vie en corrélation avec une augmentation de la résistance au stress, une hausse d’activité mitochondriale et une baisse de production de radicaux libres. Finalement, le criblage d’une banque de surexpression d’ADNc a permis d’identifier plusieurs gènes candidats responsables de ces effets en aval de la voie de signalisation Git3/PKA. La recherche sur les mécanismes moléculaires du vieillissement propose une nouvelle approche, un nouvel angle de vue, pour la compréhension des fonctions cellulaires et promet d’apporter de précieuses clefs pour mieux comprendre certaines maladies. En effet, le vieillissement est la première cause d’apparition de nombreuses affections comme les cancers, les maladies cardiovasculaires et métaboliques ou les maladies neurodégénératives tels que les syndromes d’Alzheimer et de Parkinson.
Resumo:
La phagocytose est un processus cellulaire par lequel de larges particules sont internalisées dans une vésicule, le phagosome. Lorsque formé, le phagosome acquiert ses propriétés fonctionnelles à travers un processus complexe de maturation nommé la biogénèse du phagolysosome. Cette voie implique une série d’interactions rapides avec les organelles de l’appareil endocytaire permettant la transformation graduelle du phagosome nouvellement formé en phagolysosome à partir duquel la dégradation protéolytique s’effectue. Chez l’amibe Dictyostelium discoideum, la phagocytose est employée pour ingérer les bactéries de son environnement afin de se nourrir alors que les organismes multicellulaires utilisent la phagocytose dans un but immunitaire, où des cellules spécialisées nommées phagocytes internalisent, tuent et dégradent les pathogènes envahissant de l’organisme et constitue la base de l’immunité innée. Chez les vertébrés à mâchoire cependant, la transformation des mécanismes moléculaires du phagosome en une organelle perfectionnée pour l’apprêtement et la présentation de peptides antigéniques place cette organelle au centre de l’immunité innée et de l’immunité acquise. Malgré le rôle crucial auquel participe cette organelle dans la réponse immunitaire, il existe peu de détails sur la composition protéique et l’organisation fonctionnelles du phagosome. Afin d’approfondir notre compréhension des divers aspects qui relient l’immunité innée et l’immunité acquise, il devient essentiel d’élargir nos connaissances sur les fonctions moléculaire qui sont recrutées au phagosome. Le profilage par protéomique à haut débit de phagosomes isolés fut extrêmement utile dans la détermination de la composition moléculaire de cette organelle. Des études provenant de notre laboratoire ont révélé les premières listes protéiques identifiées à partir de phagosomes murins sans toutefois déterminer le ou les rôle(s) de ces protéines lors du processus de la phagocytose (Brunet et al, 2003; Garin et al, 2001). Au cours de la première étude de cette thèse (Stuart et al, 2007), nous avons entrepris la caractérisation fonctionnelle du protéome entier du phagosome de la drosophile en combinant diverses techniques d’analyses à haut débit (protéomique, réseaux d’intéractions protéique et ARN interférent). En utilisant cette stratégie, nous avons identifié 617 protéines phagosomales par spectrométrie de masse à partir desquelles nous avons accru cette liste en construisant des réseaux d’interactions protéine-protéine. La contribution de chaque protéine à l’internalisation de bactéries fut ensuite testée et validée par ARN interférent à haut débit et nous a amené à identifier un nouveau régulateur de la phagocytose, le complexe de l’exocyst. En appliquant ce modèle combinatoire de biologie systémique, nous démontrons la puissance et l’efficacité de cette approche dans l’étude de processus cellulaire complexe tout en créant un cadre à partir duquel il est possible d’approfondir nos connaissances sur les différents mécanismes de la phagocytose. Lors du 2e article de cette thèse (Boulais et al, 2010), nous avons entrepris la caractérisation moléculaire des étapes évolutives ayant contribué au remodelage des propriétés fonctionnelles de la phagocytose au cours de l’évolution. Pour ce faire, nous avons isolé des phagosomes à partir de trois organismes distants (l’amibe Dictyostelium discoideum, la mouche à fruit Drosophila melanogaster et la souris Mus musculus) qui utilisent la phagocytose à des fins différentes. En appliquant une approche protéomique à grande échelle pour identifier et comparer le protéome et phosphoprotéome des phagosomes de ces trois espèces, nous avons identifié un cœur protéique commun à partir duquel les fonctions immunitaires du phagosome se seraient développées. Au cours de ce développement fonctionnel, nos données indiquent que le protéome du phagosome fut largement remodelé lors de deux périodes de duplication de gènes coïncidant avec l’émergence de l’immunité innée et acquise. De plus, notre étude a aussi caractérisée en détail l’acquisition de nouvelles protéines ainsi que le remodelage significatif du phosphoprotéome du phagosome au niveau des constituants du cœur protéique ancien de cette organelle. Nous présentons donc la première étude approfondie des changements qui ont engendré la transformation d’un compartiment phagotrophe à une organelle entièrement apte pour la présentation antigénique.
Resumo:
Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le maximum de vraisemblance est une des techniques les plus populaires, comme, sous des conditions l´egères, les estimateurs ainsi produits sont consistants et asymptotiquement efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme des problèmes de programmation non linéaires, éventuellement non convexe, pour lesquels deux grandes classes de méthodes de résolution sont les techniques de région de confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou récemment d´eveloppées en optimisation non linéaire, dans le contexte particulier de l’estimation de maximum de vraisemblance. Nous développons également de nouveaux algorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approximation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en particulier les modèles logit mélangés.
Resumo:
The first two articles build procedures to simulate vector of univariate states and estimate parameters in nonlinear and non Gaussian state space models. We propose state space speci fications that offer more flexibility in modeling dynamic relationship with latent variables. Our procedures are extension of the HESSIAN method of McCausland[2012]. Thus, they use approximation of the posterior density of the vector of states that allow to : simulate directly from the state vector posterior distribution, to simulate the states vector in one bloc and jointly with the vector of parameters, and to not allow data augmentation. These properties allow to build posterior simulators with very high relative numerical efficiency. Generic, they open a new path in nonlinear and non Gaussian state space analysis with limited contribution of the modeler. The third article is an essay in commodity market analysis. Private firms coexist with farmers' cooperatives in commodity markets in subsaharan african countries. The private firms have the biggest market share while some theoretical models predict they disappearance once confronted to farmers cooperatives. Elsewhere, some empirical studies and observations link cooperative incidence in a region with interpersonal trust, and thus to farmers trust toward cooperatives. We propose a model that sustain these empirical facts. A model where the cooperative reputation is a leading factor determining the market equilibrium of a price competition between a cooperative and a private firm
Resumo:
Cette étude offre une lecture de The Waves de Virginia Woolf en tant qu’une représentation fictive des “formes exactes de la pensée.” Elle établit le lien entre le récit de The Waves et l’expérience personnelle de l’auteur avec “les voix” qui hantaient son esprit, en raison de sa maladie maniaco-dépressive. La présente étude propose également une analyse du roman inspirée par la théorie de la “fusion conceptuelle:” cette approche narrative a pour but de (1) souligner “la fusion” de l’imagination, des émotions, et de la perception qui constitue l’essence du récit de The Waves, (2) mettre l’accent sur les “configurations mentales” subtilement développées par/entre les voix du récit, en vue de diminuer le semblant de la désorganisation et de l’éparpillement des pensées généré par la représentation de la conscience, (3) permettre au lecteur d’accéder à la configuration subjective et identitaire des différentes voix du récit en traçant l’éventail de leurs pensées “fusionnées.” L’argument de cette dissertation est subdivisé en trois chapitres: le premier chapitre emploie la théorie de la fusion conceptuelle afin de souligner les processus mentaux menant à la création de “moments de vision.” Il décrit la manière dont la fusion des pensées intérieures et de la perception dans les “moments de vision” pourrait servir de tremplin à la configuration subjective des voix du récit. La deuxième section interprète l’ensemble des voix du roman en tant qu’une “société de soi-mêmes.” À l’aide de la théorie de la fusion conceptuelle, elle met l’accent sur les formes de pensée entrelacées entre les différentes voix du récit, ce qui permet aux protagonistes de développer une identité interrelationnelle, placée au plein centre des différentes subjectivités. Le troisième chapitre trace les processus mentaux permettant aux différentes voix du roman de développer une forme de subjectivité cohérente et intégrée. Dans ce chapitre, l’idée de la fusion des différents aspects de l’identité proposée par Fauconnier et Turner est employée pour décrire l’intégration des éléments de la subjectivité des protagonistes en une seule configuration identitaire. D’ailleurs, ce chapitre propose une interprétation du triste suicide de Rhoda qui met en relief son inaptitude à intégrer les fragments de sa subjectivité en une identité cohérente et “fusionnée.”
Resumo:
Demonstration videos can be found on fr.linkedin.com/in/doriangomez/
Resumo:
Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.
Resumo:
L'apprentissage profond est un domaine de recherche en forte croissance en apprentissage automatique qui est parvenu à des résultats impressionnants dans différentes tâches allant de la classification d'images à la parole, en passant par la modélisation du langage. Les réseaux de neurones récurrents, une sous-classe d'architecture profonde, s'avèrent particulièrement prometteurs. Les réseaux récurrents peuvent capter la structure temporelle dans les données. Ils ont potentiellement la capacité d'apprendre des corrélations entre des événements éloignés dans le temps et d'emmagasiner indéfiniment des informations dans leur mémoire interne. Dans ce travail, nous tentons d'abord de comprendre pourquoi la profondeur est utile. Similairement à d'autres travaux de la littérature, nos résultats démontrent que les modèles profonds peuvent être plus efficaces pour représenter certaines familles de fonctions comparativement aux modèles peu profonds. Contrairement à ces travaux, nous effectuons notre analyse théorique sur des réseaux profonds acycliques munis de fonctions d'activation linéaires par parties, puisque ce type de modèle est actuellement l'état de l'art dans différentes tâches de classification. La deuxième partie de cette thèse porte sur le processus d'apprentissage. Nous analysons quelques techniques d'optimisation proposées récemment, telles l'optimisation Hessian free, la descente de gradient naturel et la descente des sous-espaces de Krylov. Nous proposons le cadre théorique des méthodes à région de confiance généralisées et nous montrons que plusieurs de ces algorithmes développés récemment peuvent être vus dans cette perspective. Nous argumentons que certains membres de cette famille d'approches peuvent être mieux adaptés que d'autres à l'optimisation non convexe. La dernière partie de ce document se concentre sur les réseaux de neurones récurrents. Nous étudions d'abord le concept de mémoire et tentons de répondre aux questions suivantes: Les réseaux récurrents peuvent-ils démontrer une mémoire sans limite? Ce comportement peut-il être appris? Nous montrons que cela est possible si des indices sont fournis durant l'apprentissage. Ensuite, nous explorons deux problèmes spécifiques à l'entraînement des réseaux récurrents, à savoir la dissipation et l'explosion du gradient. Notre analyse se termine par une solution au problème d'explosion du gradient qui implique de borner la norme du gradient. Nous proposons également un terme de régularisation conçu spécifiquement pour réduire le problème de dissipation du gradient. Sur un ensemble de données synthétique, nous montrons empiriquement que ces mécanismes peuvent permettre aux réseaux récurrents d'apprendre de façon autonome à mémoriser des informations pour une période de temps indéfinie. Finalement, nous explorons la notion de profondeur dans les réseaux de neurones récurrents. Comparativement aux réseaux acycliques, la définition de profondeur dans les réseaux récurrents est souvent ambiguë. Nous proposons différentes façons d'ajouter de la profondeur dans les réseaux récurrents et nous évaluons empiriquement ces propositions.
Resumo:
À l'ère de la mondialisation, où la matrice capitaliste continue de dominer, la classification dans les groupes se définit encore en termes de classes, de genres et d'ethnicité. Les transformations causées par la mondialisation actuelle entraînent de nouveaux modes de production, qui à leur tour transforment les modes de définition et de régulation des populations. Le projet d'exploitation du Nord du Québec est un phénomène relativement récent; or, le processus de construction d'une classe sociale n'est pas un phénomène nouveau. La formation des classes sociales étant toujours en évolution, il semble aujourd'hui pertinent de réexaminer les facteurs économiques, sociologiques et historiques des caractéristiques théoriques nécessaires à la construction et à la représentation d'une classe sociale dont l'existence est liée à l'exploitation accrue des richesses naturelles, la classe ouvrière du Nord du Québec. À Fermont, dans le Nord du Québec, les compagnies minières emploient depuis 2011 une grande quantité de travailleurs québécois provenant de l'extérieur de la région, des travailleurs permanents non- résidents. Ainsi, la structure sociale construite sur la force de travailleurs locaux est aux prises avec de nouvelles dynamiques de mobilité sociale géographique. Au travail, les femmes et les autochtones sont aussi affectés par les relations des systèmes de pouvoir de la vie quotidienne, car les emplois de l'industrie minière et du domaine de la construction sont socialement et historiquement fondés sur des capitaux sociaux et culturels (blanc et homme). La classe ouvrière du Nord du Québec est redéfinit par son rapport à la migration géographique des travailleurs permanents non- résidents, par ses relations avec les minorités de genre et les minorités autochtones, relations qui engendrent une organisation sociale complexe et hétérogène.
Resumo:
Dans ce rapport de mémoire, nous avons utilisé les méthodes numériques telles que la dynamique moléculaire (code de Lammps) et ART-cinétique. Ce dernier est un algorithme de Monte Carlo cinétique hors réseau avec construction du catalogue d'événements à la volée qui incorpore exactement tous les effets élastiques. Dans la première partie, nous avons comparé et évalué des divers algorithmes de la recherche du minimum global sur une surface d'énergie potentielle des matériaux complexes. Ces divers algorithmes choisis sont essentiellement ceux qui utilisent le principe Bell-Evans-Polanyi pour explorer la surface d'énergie potentielle. Cette étude nous a permis de comprendre d'une part, les étapes nécessaires pour un matériau complexe d'échapper d'un minimum local vers un autre et d'autre part de contrôler les recherches pour vite trouver le minimum global. En plus, ces travaux nous ont amené à comprendre la force de ces méthodes sur la cinétique de l'évolution structurale de ces matériaux complexes. Dans la deuxième partie, nous avons mis en place un outil de simulation (le potentiel ReaxFF couplé avec ART-cinétique) capable d'étudier les étapes et les processus d'oxydation du silicium pendant des temps long comparable expérimentalement. Pour valider le système mis en place, nous avons effectué des tests sur les premières étapes d'oxydation du silicium. Les résultats obtenus sont en accord avec la littérature. Cet outil va être utilisé pour comprendre les vrais processus de l'oxydation et les transitions possibles des atomes d'oxygène à la surface du silicium associée avec les énergies de barrière, des questions qui sont des défis pour l'industrie micro-électronique.
Resumo:
La tomographie d’émission par positrons (TEP) est une modalité d’imagerie moléculaire utilisant des radiotraceurs marqués par des isotopes émetteurs de positrons permettant de quantifier et de sonder des processus biologiques et physiologiques. Cette modalité est surtout utilisée actuellement en oncologie, mais elle est aussi utilisée de plus en plus en cardiologie, en neurologie et en pharmacologie. En fait, c’est une modalité qui est intrinsèquement capable d’offrir avec une meilleure sensibilité des informations fonctionnelles sur le métabolisme cellulaire. Les limites de cette modalité sont surtout la faible résolution spatiale et le manque d’exactitude de la quantification. Par ailleurs, afin de dépasser ces limites qui constituent un obstacle pour élargir le champ des applications cliniques de la TEP, les nouveaux systèmes d’acquisition sont équipés d’un grand nombre de petits détecteurs ayant des meilleures performances de détection. La reconstruction de l’image se fait en utilisant les algorithmes stochastiques itératifs mieux adaptés aux acquisitions à faibles statistiques. De ce fait, le temps de reconstruction est devenu trop long pour une utilisation en milieu clinique. Ainsi, pour réduire ce temps, on les données d’acquisition sont compressées et des versions accélérées d’algorithmes stochastiques itératifs qui sont généralement moins exactes sont utilisées. Les performances améliorées par l’augmentation de nombre des détecteurs sont donc limitées par les contraintes de temps de calcul. Afin de sortir de cette boucle et permettre l’utilisation des algorithmes de reconstruction robustes, de nombreux travaux ont été effectués pour accélérer ces algorithmes sur les dispositifs GPU (Graphics Processing Units) de calcul haute performance. Dans ce travail, nous avons rejoint cet effort de la communauté scientifique pour développer et introduire en clinique l’utilisation des algorithmes de reconstruction puissants qui améliorent la résolution spatiale et l’exactitude de la quantification en TEP. Nous avons d’abord travaillé sur le développement des stratégies pour accélérer sur les dispositifs GPU la reconstruction des images TEP à partir des données d’acquisition en mode liste. En fait, le mode liste offre de nombreux avantages par rapport à la reconstruction à partir des sinogrammes, entre autres : il permet d’implanter facilement et avec précision la correction du mouvement et le temps de vol (TOF : Time-Of Flight) pour améliorer l’exactitude de la quantification. Il permet aussi d’utiliser les fonctions de bases spatio-temporelles pour effectuer la reconstruction 4D afin d’estimer les paramètres cinétiques des métabolismes avec exactitude. Cependant, d’une part, l’utilisation de ce mode est très limitée en clinique, et d’autre part, il est surtout utilisé pour estimer la valeur normalisée de captation SUV qui est une grandeur semi-quantitative limitant le caractère fonctionnel de la TEP. Nos contributions sont les suivantes : - Le développement d’une nouvelle stratégie visant à accélérer sur les dispositifs GPU l’algorithme 3D LM-OSEM (List Mode Ordered-Subset Expectation-Maximization), y compris le calcul de la matrice de sensibilité intégrant les facteurs d’atténuation du patient et les coefficients de normalisation des détecteurs. Le temps de calcul obtenu est non seulement compatible avec une utilisation clinique des algorithmes 3D LM-OSEM, mais il permet également d’envisager des reconstructions rapides pour les applications TEP avancées telles que les études dynamiques en temps réel et des reconstructions d’images paramétriques à partir des données d’acquisitions directement. - Le développement et l’implantation sur GPU de l’approche Multigrilles/Multitrames pour accélérer l’algorithme LMEM (List-Mode Expectation-Maximization). L’objectif est de développer une nouvelle stratégie pour accélérer l’algorithme de référence LMEM qui est un algorithme convergent et puissant, mais qui a l’inconvénient de converger très lentement. Les résultats obtenus permettent d’entrevoir des reconstructions en temps quasi-réel que ce soit pour les examens utilisant un grand nombre de données d’acquisition aussi bien que pour les acquisitions dynamiques synchronisées. Par ailleurs, en clinique, la quantification est souvent faite à partir de données d’acquisition en sinogrammes généralement compressés. Mais des travaux antérieurs ont montré que cette approche pour accélérer la reconstruction diminue l’exactitude de la quantification et dégrade la résolution spatiale. Pour cette raison, nous avons parallélisé et implémenté sur GPU l’algorithme AW-LOR-OSEM (Attenuation-Weighted Line-of-Response-OSEM) ; une version de l’algorithme 3D OSEM qui effectue la reconstruction à partir de sinogrammes sans compression de données en intégrant les corrections de l’atténuation et de la normalisation dans les matrices de sensibilité. Nous avons comparé deux approches d’implantation : dans la première, la matrice système (MS) est calculée en temps réel au cours de la reconstruction, tandis que la seconde implantation utilise une MS pré- calculée avec une meilleure exactitude. Les résultats montrent que la première implantation offre une efficacité de calcul environ deux fois meilleure que celle obtenue dans la deuxième implantation. Les temps de reconstruction rapportés sont compatibles avec une utilisation clinique de ces deux stratégies.