3 resultados para Head pose estimation
em Université de Montréal, Canada
Resumo:
L’analyse de la marche a émergé comme l’un des domaines médicaux le plus im- portants récemment. Les systèmes à base de marqueurs sont les méthodes les plus fa- vorisées par l’évaluation du mouvement humain et l’analyse de la marche, cependant, ces systèmes nécessitent des équipements et de l’expertise spécifiques et sont lourds, coûteux et difficiles à utiliser. De nombreuses approches récentes basées sur la vision par ordinateur ont été développées pour réduire le coût des systèmes de capture de mou- vement tout en assurant un résultat de haute précision. Dans cette thèse, nous présentons notre nouveau système d’analyse de la démarche à faible coût, qui est composé de deux caméras vidéo monoculaire placées sur le côté gauche et droit d’un tapis roulant. Chaque modèle 2D de la moitié du squelette humain est reconstruit à partir de chaque vue sur la base de la segmentation dynamique de la couleur, l’analyse de la marche est alors effectuée sur ces deux modèles. La validation avec l’état de l’art basée sur la vision du système de capture de mouvement (en utilisant le Microsoft Kinect) et la réalité du ter- rain (avec des marqueurs) a été faite pour démontrer la robustesse et l’efficacité de notre système. L’erreur moyenne de l’estimation du modèle de squelette humain par rapport à la réalité du terrain entre notre méthode vs Kinect est très prometteur: les joints des angles de cuisses (6,29◦ contre 9,68◦), jambes (7,68◦ contre 11,47◦), pieds (6,14◦ contre 13,63◦), la longueur de la foulée (6.14cm rapport de 13.63cm) sont meilleurs et plus stables que ceux de la Kinect, alors que le système peut maintenir une précision assez proche de la Kinect pour les bras (7,29◦ contre 6,12◦), les bras inférieurs (8,33◦ contre 8,04◦), et le torse (8,69◦contre 6,47◦). Basé sur le modèle de squelette obtenu par chaque méthode, nous avons réalisé une étude de symétrie sur différentes articulations (coude, genou et cheville) en utilisant chaque méthode sur trois sujets différents pour voir quelle méthode permet de distinguer plus efficacement la caractéristique symétrie / asymétrie de la marche. Dans notre test, notre système a un angle de genou au maximum de 8,97◦ et 13,86◦ pour des promenades normale et asymétrique respectivement, tandis que la Kinect a donné 10,58◦et 11,94◦. Par rapport à la réalité de terrain, 7,64◦et 14,34◦, notre système a montré une plus grande précision et pouvoir discriminant entre les deux cas.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
La phylogénie moléculaire fournit un outil complémentaire aux études paléontologiques et géologiques en permettant la construction des relations phylogénétiques entre espèces ainsi que l’estimation du temps de leur divergence. Cependant lorsqu’un arbre phylogénétique est inféré, les chercheurs se focalisent surtout sur la topologie, c'est-à-dire l’ordre de branchement relatif des différents nœuds. Les longueurs des branches de cette phylogénie sont souvent considérées comme des sous-produits, des paramètres de nuisances apportant peu d’information. Elles constituent cependant l’information primaire pour réaliser des datations moléculaires. Or la saturation, la présence de substitutions multiples à une même position, est un artefact qui conduit à une sous-estimation systématique des longueurs de branche. Nous avons décidé d’estimer l‘influence de la saturation et son impact sur l’estimation de l’âge de divergence. Nous avons choisi d’étudier le génome mitochondrial des mammifères qui est supposé avoir un niveau élevé de saturation et qui est disponible pour de nombreuses espèces. De plus, les relations phylogénétiques des mammifères sont connues, ce qui nous a permis de fixer la topologie, contrôlant ainsi un des paramètres influant la longueur des branches. Nous avons utilisé principalement deux méthodes pour améliorer la détection des substitutions multiples : (i) l’augmentation du nombre d’espèces afin de briser les plus longues branches de l’arbre et (ii) des modèles d’évolution des séquences plus ou moins réalistes. Les résultats montrèrent que la sous-estimation des longueurs de branche était très importante (jusqu'à un facteur de 3) et que l’utilisation d'un grand nombre d’espèces est un facteur qui influence beaucoup plus la détection de substitutions multiples que l’amélioration des modèles d’évolutions de séquences. Cela suggère que même les modèles d’évolution les plus complexes disponibles actuellement, (exemple: modèle CAT+Covarion, qui prend en compte l’hétérogénéité des processus de substitution entre positions et des vitesses d’évolution au cours du temps) sont encore loin de capter toute la complexité des processus biologiques. Malgré l’importance de la sous-estimation des longueurs de branche, l’impact sur les datations est apparu être relativement faible, car la sous-estimation est plus ou moins homothétique. Cela est particulièrement vrai pour les modèles d’évolution. Cependant, comme les substitutions multiples sont le plus efficacement détectées en brisant les branches en fragments les plus courts possibles via l’ajout d’espèces, se pose le problème du biais dans l’échantillonnage taxonomique, biais dû à l‘extinction pendant l’histoire de la vie sur terre. Comme ce biais entraine une sous-estimation non-homothétique, nous considérons qu’il est indispensable d’améliorer les modèles d’évolution des séquences et proposons que le protocole élaboré dans ce travail permettra d’évaluer leur efficacité vis-à-vis de la saturation.