3 resultados para Graph-based
em Université de Montréal, Canada
Resumo:
Récemment, nous avons pu observer un intérêt grandissant pour l'application de l'analogie formelle à l'analyse morphologique. L'intérêt premier de ce concept repose sur ses parallèles avec le processus mental impliqué dans la création de nouveaux termes basée sur les relations morphologiques préexistantes de la langue. Toutefois, l'utilisation de ce concept reste tout de même marginale due notamment à son coût de calcul élevé.Dans ce document, nous présenterons le système à base de graphe Moranapho fondé sur l'analogie formelle. Nous démontrerons par notre participation au Morpho Challenge 2009 (Kurimo:10) et nos expériences subséquentes, que la qualité des analyses obtenues par ce système rivalise avec l'état de l'art. Nous analyserons aussi l'influence de certaines de ses composantes sur la qualité des analyses morphologiques produites. Nous appuierons les conclusions tirées de nos analyses sur des théories bien établies dans le domaine de la linguistique. Ceci nous permet donc de fournir certaines prédictions sur les succès et les échecs de notre système, lorsqu'appliqué à d'autres langues que celles testées au cours de nos expériences.
Resumo:
Malgré des progrès constants en termes de capacité de calcul, mémoire et quantité de données disponibles, les algorithmes d'apprentissage machine doivent se montrer efficaces dans l'utilisation de ces ressources. La minimisation des coûts est évidemment un facteur important, mais une autre motivation est la recherche de mécanismes d'apprentissage capables de reproduire le comportement d'êtres intelligents. Cette thèse aborde le problème de l'efficacité à travers plusieurs articles traitant d'algorithmes d'apprentissage variés : ce problème est vu non seulement du point de vue de l'efficacité computationnelle (temps de calcul et mémoire utilisés), mais aussi de celui de l'efficacité statistique (nombre d'exemples requis pour accomplir une tâche donnée). Une première contribution apportée par cette thèse est la mise en lumière d'inefficacités statistiques dans des algorithmes existants. Nous montrons ainsi que les arbres de décision généralisent mal pour certains types de tâches (chapitre 3), de même que les algorithmes classiques d'apprentissage semi-supervisé à base de graphe (chapitre 5), chacun étant affecté par une forme particulière de la malédiction de la dimensionalité. Pour une certaine classe de réseaux de neurones, appelés réseaux sommes-produits, nous montrons qu'il peut être exponentiellement moins efficace de représenter certaines fonctions par des réseaux à une seule couche cachée, comparé à des réseaux profonds (chapitre 4). Nos analyses permettent de mieux comprendre certains problèmes intrinsèques liés à ces algorithmes, et d'orienter la recherche dans des directions qui pourraient permettre de les résoudre. Nous identifions également des inefficacités computationnelles dans les algorithmes d'apprentissage semi-supervisé à base de graphe (chapitre 5), et dans l'apprentissage de mélanges de Gaussiennes en présence de valeurs manquantes (chapitre 6). Dans les deux cas, nous proposons de nouveaux algorithmes capables de traiter des ensembles de données significativement plus grands. Les deux derniers chapitres traitent de l'efficacité computationnelle sous un angle différent. Dans le chapitre 7, nous analysons de manière théorique un algorithme existant pour l'apprentissage efficace dans les machines de Boltzmann restreintes (la divergence contrastive), afin de mieux comprendre les raisons qui expliquent le succès de cet algorithme. Finalement, dans le chapitre 8 nous présentons une application de l'apprentissage machine dans le domaine des jeux vidéo, pour laquelle le problème de l'efficacité computationnelle est relié à des considérations d'ingénierie logicielle et matérielle, souvent ignorées en recherche mais ô combien importantes en pratique.
Resumo:
One of the major concerns of scoliotic patients undergoing spinal correction surgery is the trunk's external appearance after the surgery. This paper presents a novel incremental approach for simulating postoperative trunk shape in scoliosis surgery. Preoperative and postoperative trunk shapes data were obtained using three-dimensional medical imaging techniques for seven patients with adolescent idiopathic scoliosis. Results of qualitative and quantitative evaluations, based on the comparison of the simulated and actual postoperative trunk surfaces, showed an adequate accuracy of the method. Our approach provides a candidate simulation tool to be used in a clinical environment for the surgery planning process.