8 resultados para Gamma Rays

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

La matière sombre est un mystère dans le domaine de l’astrophysique depuis déjà plusieurs années. De nombreuses observations montrent que jusqu’à 85 % de la masse gravitationnelle totale de l’univers serait composée de cette matière de nature inconnue. Une théorie expliquant cette masse manquante considérerait les WIMPs (Weakly Interacting Massive Particles), particules stables, non chargées, prédites par des extensions du modèle standard, comme candidats. Le projet PICASSO (Projet d’Identification des CAndidats Supersymétriques à la matière Sombre) est une expérience qui tente de détecter directement le WIMP. Le projet utilise des détecteurs à gouttelettes de fréon (C4F10) surchauffées. La collision entre un WIMP et le noyau de fluor crée un recul nucléaire qui cause à son tour une transition de phase de la gouttelette liquide à une bulle gazeuse. Le bruit de ce phénomène est alors capté par des senseurs piézoélectriques montés sur les parois des détecteurs. Le WIMP n’est cependant pas la seule particule pouvant causer une telle transition de phase. D’autres particules environnantes peuvent former des bulles, telles les particules alpha où même des rayons gamma . Le système d’acquisition de données (DAQ) est aussi en proie à du bruit électronique qui peut être enregistré, ainsi que sensible à du bruit acoustique extérieur au détecteur. Finalement, des fractures dans le polymère qui tient les gouttelettes en place peut également causer des transitions de phase spontanées. Il faut donc minimiser l’impact de tous ces différents bruit de fond. La pureté du matériel utilisé dans la fabrication des détecteurs devient alors très importante. On fait aussi appel à des méthodes qui impliquent l’utilisation de variables de discrimination développées dans le but d’améliorer les limites d’exclusion de détection du WIMP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La méthode que nous présentons pour modéliser des données dites de "comptage" ou données de Poisson est basée sur la procédure nommée Modélisation multi-niveau et interactive de la régression de Poisson (PRIMM) développée par Christiansen et Morris (1997). Dans la méthode PRIMM, la régression de Poisson ne comprend que des effets fixes tandis que notre modèle intègre en plus des effets aléatoires. De même que Christiansen et Morris (1997), le modèle étudié consiste à faire de l'inférence basée sur des approximations analytiques des distributions a posteriori des paramètres, évitant ainsi d'utiliser des méthodes computationnelles comme les méthodes de Monte Carlo par chaînes de Markov (MCMC). Les approximations sont basées sur la méthode de Laplace et la théorie asymptotique liée à l'approximation normale pour les lois a posteriori. L'estimation des paramètres de la régression de Poisson est faite par la maximisation de leur densité a posteriori via l'algorithme de Newton-Raphson. Cette étude détermine également les deux premiers moments a posteriori des paramètres de la loi de Poisson dont la distribution a posteriori de chacun d'eux est approximativement une loi gamma. Des applications sur deux exemples de données ont permis de vérifier que ce modèle peut être considéré dans une certaine mesure comme une généralisation de la méthode PRIMM. En effet, le modèle s'applique aussi bien aux données de Poisson non stratifiées qu'aux données stratifiées; et dans ce dernier cas, il comporte non seulement des effets fixes mais aussi des effets aléatoires liés aux strates. Enfin, le modèle est appliqué aux données relatives à plusieurs types d'effets indésirables observés chez les participants d'un essai clinique impliquant un vaccin quadrivalent contre la rougeole, les oreillons, la rub\'eole et la varicelle. La régression de Poisson comprend l'effet fixe correspondant à la variable traitement/contrôle, ainsi que des effets aléatoires liés aux systèmes biologiques du corps humain auxquels sont attribués les effets indésirables considérés.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background This paper presents a method that registers MRIs acquired in prone position, with surface topography (TP) and X-ray reconstructions acquired in standing position, in order to obtain a 3D representation of a human torso incorporating the external surface, bone structures, and soft tissues. Methods TP and X-ray data are registered using landmarks. Bone structures are used to register each MRI slice using an articulated model, and the soft tissue is confined to the volume delimited by the trunk and bone surfaces using a constrained thin-plate spline. Results The method is tested on 3 pre-surgical patients with scoliosis and shows a significant improvement, qualitatively and using the Dice similarity coefficient, in fitting the MRI into the standing patient model when compared to rigid and articulated model registration. The determinant of the Jacobian of the registration deformation shows higher variations in the deformation in areas closer to the surface of the torso. Conclusions The novel, resulting 3D full torso model can provide a more complete representation of patient geometry to be incorporated in surgical simulators under development that aim at predicting the effect of scoliosis surgery on the external appearance of the patient’s torso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.