7 resultados para GAMMA-LIALO2(100)
em Université de Montréal, Canada
Resumo:
Environ 2-3% d’enfants avec convulsions fébriles (CF) développent une épilepsie, mais les outils cliniques existants ne permettent pas d’identifier les enfants susceptibles de développer une épilepsie post-convulsion fébrile. Des études ont mis en évidence des anomalies d’EEG quantifiée, et plus particulièrement en réponse à la stimulation lumineuse intermittente (SLI), chez des patients épileptiques. Aucune étude n’a analysé ces paramètres chez l’enfant avec CF et il importe de déterminer s’ils sont utiles pour évaluer le pronostic des CF. Les objectifs de ce programme de recherche étaient d’identifier, d’une part, des facteurs de risque cliniques qui déterminent le développement de l’épilepsie après des CF et, d’autre part, des marqueurs électrophysiologiques quantitatifs qui différencieraient les enfants avec CF des témoins et pourraient aider à évaluer leur pronostic. Afin de répondre à notre premier objectif, nous avons analysé les dossiers de 482 enfants avec CF, âgés de 3 mois à 6 ans. En utilisant des statistiques de survie, nous avons décrit les facteurs de risque pour développer une épilepsie partielle (antécédents prénataux, retard de développement, CF prolongées et focales) et généralisée (antécédents familiaux d’épilepsie, CF récurrentes et après l’âge de 4 ans). De plus, nous avons identifié trois phénotypes cliniques distincts ayant un pronostic différent : (i) CF simples avec des antécédents familiaux de CF et sans risque d’épilepsie ultérieure; (ii) CF récurrentes avec des antécédents familiaux d’épilepsie et un risque d’épilepsie généralisée; (iii) CF focales avec des antécédents familiaux d’épilepsie et un risque d’épilepsie partielle. Afin de répondre à notre deuxième objectif, nous avons d’abord analysé les potentiels visuels steady-state (PEVSS) évoqués par la SLI (5, 7,5, 10 et 12,5 Hz) en fonction de l’âge. Le tracé EEG de haute densité (128 canaux) a été enregistré chez 61 enfants âgés entre 6 mois et 16 ans et 8 adultes normaux. Nous rapportons un développement topographique différent de l’alignement de phase des composantes des PEVSS de basses (5-15 Hz) et de hautes (30-50 Hz) fréquences. Ainsi, l’alignement de phase des composantes de basses fréquences augmente en fonction de l’âge seulement au niveau des régions occipitale et frontale. Par contre, les composantes de hautes fréquences augmentent au niveau de toutes les régions cérébrales. Puis, en utilisant cette même méthodologie, nous avons investigué si les enfants avec CF présentent des anomalies des composantes gamma (50-100 Hz) des PEVSS auprès de 12 cas de CF, 5 frères et sœurs des enfants avec CF et 15 témoins entre 6 mois et 3 ans. Nous montrons une augmentation de la magnitude et de l’alignement de phase des composantes gamma des PEVSS chez les enfants avec CF comparés au groupe témoin et à la fratrie. Ces travaux ont permis d’identifier des phénotypes électro-cliniques d’intérêt qui différencient les enfants avec CF des enfants témoins et de leur fratrie. L’étape suivante sera de vérifier s’il y a une association entre les anomalies retrouvées, la présentation clinique et le pronostic des CF. Cela pourrait éventuellement aider à identifier les enfants à haut risque de développer une épilepsie et permettre l’institution d’un traitement neuroprotecteur précoce.
Resumo:
Danièle Bourcier, Directrice de recherche au CNRS, Chercheure au Centre d’études et de recherche de science administrative CERSA, Université Panthéon Assas Paris II
Approximation de la distribution a posteriori d'un modèle Gamma-Poisson hiérarchique à effets mixtes
Resumo:
La méthode que nous présentons pour modéliser des données dites de "comptage" ou données de Poisson est basée sur la procédure nommée Modélisation multi-niveau et interactive de la régression de Poisson (PRIMM) développée par Christiansen et Morris (1997). Dans la méthode PRIMM, la régression de Poisson ne comprend que des effets fixes tandis que notre modèle intègre en plus des effets aléatoires. De même que Christiansen et Morris (1997), le modèle étudié consiste à faire de l'inférence basée sur des approximations analytiques des distributions a posteriori des paramètres, évitant ainsi d'utiliser des méthodes computationnelles comme les méthodes de Monte Carlo par chaînes de Markov (MCMC). Les approximations sont basées sur la méthode de Laplace et la théorie asymptotique liée à l'approximation normale pour les lois a posteriori. L'estimation des paramètres de la régression de Poisson est faite par la maximisation de leur densité a posteriori via l'algorithme de Newton-Raphson. Cette étude détermine également les deux premiers moments a posteriori des paramètres de la loi de Poisson dont la distribution a posteriori de chacun d'eux est approximativement une loi gamma. Des applications sur deux exemples de données ont permis de vérifier que ce modèle peut être considéré dans une certaine mesure comme une généralisation de la méthode PRIMM. En effet, le modèle s'applique aussi bien aux données de Poisson non stratifiées qu'aux données stratifiées; et dans ce dernier cas, il comporte non seulement des effets fixes mais aussi des effets aléatoires liés aux strates. Enfin, le modèle est appliqué aux données relatives à plusieurs types d'effets indésirables observés chez les participants d'un essai clinique impliquant un vaccin quadrivalent contre la rougeole, les oreillons, la rub\'eole et la varicelle. La régression de Poisson comprend l'effet fixe correspondant à la variable traitement/contrôle, ainsi que des effets aléatoires liés aux systèmes biologiques du corps humain auxquels sont attribués les effets indésirables considérés.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal