2 resultados para Fuzzy ranking

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide a survey of the literature on ranking sets of objects. The interpretations of those set rankings include those employed in the theory of choice under complete uncertainty, rankings of opportunity sets, set rankings that appear in matching theory, and the structure of assembly preferences. The survey is prepared for the Handbook of Utility Theory, vol. 2, edited by Salvador Barberà, Peter Hammond, and Christian Seidl, to be published by Kluwer Academic Publishers. The chapter number is provisional.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Each item in a given collection is characterized by a set of possible performances. A (ranking) method is a function that assigns an ordering of the items to every performance profile. Ranking by Rating consists in evaluating each item’s performance by using an exogenous rating function, and ranking items according to their performance ratings. Any such method is separable: the ordering of two items does not depend on the performances of the remaining items. We prove that every separable method must be of the ranking-by-rating type if (i) the set of possible performances is the same for all items and the method is anonymous, or (ii) the set of performances of each item is ordered and the method is monotonic. When performances are m-dimensional vectors, a separable, continuous, anonymous, monotonic, and invariant method must rank items according to a weighted geometric mean of their performances along the m dimensions.