18 resultados para Explanatory Variables Effect

em Université de Montréal, Canada


Relevância:

90.00% 90.00%

Publicador:

Resumo:

La prise optimale d’un traitement antirétroviral est la clé du succès de ces traitements. Cette prise devrait être d’au moins 95 % des médicaments antirétroviraux prescrits afin de supprimer à long terme la réplication virale et donc de restaurer et de préserver la fonction immunologique. Cependant, les personnes vivant avec le virus de l’immunodéficience humaine (PVVIH) éprouvent des difficultés à adopter et à maintenir ce niveau de prise dans le temps. Bien que certaines interventions aient démontré leur capacité à faciliter ce comportement, au Québec il n’y a pas d’intervention systématique pour soutenir ces personnes dans la prise quotidienne de ces traitements. Le but de cette étude était donc de développer et d’évaluer une intervention pour faciliter le comportement de prise optimale d’un traitement antirétroviral chez des personnes vivant avec le VIH. Pour guider le développement de l’intervention, la démarche appelée « intervention mapping » a été suivie. Le cadre théorique proposé par Godin et ses collègues (2005) qui inclut le sentiment d’efficacité personnelle et les attitudes positives face à la prise optimale d’un traitement antirétroviral a été ainsi utilisé non seulement pour prédire et expliquer le comportement de prise, mais aussi pour élaborer l’intervention. Selon ce modèle, le soutien social, la satisfaction envers les professionnels et le fait de ne pas ressentir d’effets indésirables sont autant de facteurs modifiables associés au sentiment d’efficacité personnelle et aux attitudes positives. L’intervention développée visait l’acquisition et la mobilisation des habiletés nécessaires pour influencer ces facteurs en vue de rehausser le sentiment d’efficacité personnelle et les attitudes positives ainsi que pour faciliter ce comportement. Cette intervention comportait quatre rencontres d’une durée de 45 à 75 minutes, s’échelonnant sur 12 semaines, avec une infirmière iii possédant une expertise en VIH. L’évaluation de l’effet de cette intervention sur le comportement et les variables explicatives a été effectuée à l’aide d’un essai clinique avec répartition aléatoire. La principale variable résultat a été mesurée à l’aide d’un questionnaire autoadministré, de la charge virale et du nombre de CD4. Autant la variable résultat principale que les variables explicatives ont été mesurées avant l’intervention et après celle-ci, soit à 12 et 24 semaines. L’échantillon était constitué de 51, personnes vivant avec le VIH et suivies dans une clinique à Montréal : 23 dans le groupe contrôle et 28 dans le groupe expérimental. Des analyses de variance (ANOVA) à mesures répétées ont été réalisées afin d’analyser l’effet de l’intervention sur la prise optimale d’un traitement antirétroviral et les autres variables intermédiaires dans le temps. Les résultats montrent une tendance positive (p = 0,056) quant à l’obtention d’une charge virale indétectable dans le groupe intervention. Ainsi, 43,8 % plus de personnes du groupe expérimental comparativement au groupe contrôle (78,6 % versus 34,8 %) avaient une charge virale indétectable à 12 semaines et 32,8 % de plus à 24 semaines (89,3 % versus 56,5 %). Bien qu’aucun effet significatif ait été trouvé en regard des variables explicatives, probablement à cause d’un manque de puissance statistique, les légères augmentations observées dans le groupe expérimental sont cohérentes avec le modèle théorique utilisé (Godin & al., 2005). Cette étude contribue à l’avancement des connaissances en proposant une intervention pour faciliter la prise optimale d’un traitement antirétroviral chez des personnes vivant avec le VIH.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En écologie, dans le cadre par exemple d’études des services fournis par les écosystèmes, les modélisations descriptive, explicative et prédictive ont toutes trois leur place distincte. Certaines situations bien précises requièrent soit l’un soit l’autre de ces types de modélisation ; le bon choix s’impose afin de pouvoir faire du modèle un usage conforme aux objectifs de l’étude. Dans le cadre de ce travail, nous explorons dans un premier temps le pouvoir explicatif de l’arbre de régression multivariable (ARM). Cette méthode de modélisation est basée sur un algorithme récursif de bipartition et une méthode de rééchantillonage permettant l’élagage du modèle final, qui est un arbre, afin d’obtenir le modèle produisant les meilleures prédictions. Cette analyse asymétrique à deux tableaux permet l’obtention de groupes homogènes d’objets du tableau réponse, les divisions entre les groupes correspondant à des points de coupure des variables du tableau explicatif marquant les changements les plus abrupts de la réponse. Nous démontrons qu’afin de calculer le pouvoir explicatif de l’ARM, on doit définir un coefficient de détermination ajusté dans lequel les degrés de liberté du modèle sont estimés à l’aide d’un algorithme. Cette estimation du coefficient de détermination de la population est pratiquement non biaisée. Puisque l’ARM sous-tend des prémisses de discontinuité alors que l’analyse canonique de redondance (ACR) modélise des gradients linéaires continus, la comparaison de leur pouvoir explicatif respectif permet entre autres de distinguer quel type de patron la réponse suit en fonction des variables explicatives. La comparaison du pouvoir explicatif entre l’ACR et l’ARM a été motivée par l’utilisation extensive de l’ACR afin d’étudier la diversité bêta. Toujours dans une optique explicative, nous définissons une nouvelle procédure appelée l’arbre de régression multivariable en cascade (ARMC) qui permet de construire un modèle tout en imposant un ordre hiérarchique aux hypothèses à l’étude. Cette nouvelle procédure permet d’entreprendre l’étude de l’effet hiérarchisé de deux jeux de variables explicatives, principal et subordonné, puis de calculer leur pouvoir explicatif. L’interprétation du modèle final se fait comme dans une MANOVA hiérarchique. On peut trouver dans les résultats de cette analyse des informations supplémentaires quant aux liens qui existent entre la réponse et les variables explicatives, par exemple des interactions entres les deux jeux explicatifs qui n’étaient pas mises en évidence par l’analyse ARM usuelle. D’autre part, on étudie le pouvoir prédictif des modèles linéaires généralisés en modélisant la biomasse de différentes espèces d’arbre tropicaux en fonction de certaines de leurs mesures allométriques. Plus particulièrement, nous examinons la capacité des structures d’erreur gaussienne et gamma à fournir les prédictions les plus précises. Nous montrons que pour une espèce en particulier, le pouvoir prédictif d’un modèle faisant usage de la structure d’erreur gamma est supérieur. Cette étude s’insère dans un cadre pratique et se veut un exemple pour les gestionnaires voulant estimer précisément la capture du carbone par des plantations d’arbres tropicaux. Nos conclusions pourraient faire partie intégrante d’un programme de réduction des émissions de carbone par les changements d’utilisation des terres.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different Functional Forms Are Proposed and Applied in the Context of Educational Production Functions. Three Different Specifications - the Linerar, Logit and Inverse Power Transformation (Ipt) - Are Used to Explain First Grade Students' Results to a Mathematics Achievement Test. with Ipt Identified As the Best Functional Form to Explain the Data, the Assumption of Differential Impact of Explanatory Variables on Achievement Following the Status of the Student As a Low Or High Achiever Is Retained. Policy Implications of Such Result in Terms of School Interventions Are Discussed in the Paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well known that standard asymptotic theory is not valid or is extremely unreliable in models with identification problems or weak instruments [Dufour (1997, Econometrica), Staiger and Stock (1997, Econometrica), Wang and Zivot (1998, Econometrica), Stock and Wright (2000, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. One possible way out consists here in using a variant of the Anderson-Rubin (1949, Ann. Math. Stat.) procedure. The latter, however, allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, which in general does not allow for individual coefficients. This problem may in principle be overcome by using projection techniques [Dufour (1997, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. AR-types are emphasized because they are robust to both weak instruments and instrument exclusion. However, these techniques can be implemented only by using costly numerical techniques. In this paper, we provide a complete analytic solution to the problem of building projection-based confidence sets from Anderson-Rubin-type confidence sets. The latter involves the geometric properties of “quadrics” and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are required for building the confidence intervals. We also study by simulation how “conservative” projection-based confidence sets are. Finally, we illustrate the methods proposed by applying them to three different examples: the relationship between trade and growth in a cross-section of countries, returns to education, and a study of production functions in the U.S. economy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, c’est-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à l’éducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et d’évaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que l’utilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est l’utilisation de tests robustes à l’identification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il n’existe aucune littérature économétrique sur la qualité des procédures robustes à l’identification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures d’inférence robustes à l’identification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, qu’arrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble d’instruments valides? Ces procédures se comportent-elles différemment? Et si l’endogénéité des variables instrumentales pose des difficultés majeures à l’inférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsqu’ils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection d’instruments qui demeurent valides même en présence d’identification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 – 2661. Dans cet essai, nous analysons les effets de l’endogénéité des instruments sur deux statistiques de test robustes à l’identification: la statistique d’Anderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. D’abord, lorsque le paramètre qui contrôle l’endogénéité des instruments est fixe (ne dépend pas de la taille de l’échantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence d’instruments invalides (c’est-à-dire détectent la présence d’instruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée d’une manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où l’estimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (c’est-à-dire le paramètre d’endogénéité converge vers zéro lorsque la taille de l’échantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie l’impact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous l’hypothèse nulle (niveau) et l’alternative (puissance), incluant les cas où l’identification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour l’exogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests n’ont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant qu’au moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas d’intérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) l’estimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et l’endogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests d’exogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si l’on a la certitude d’avoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le problème bien connu du rendement à l’éducation. Le troisième essai étend le test d’exogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence d’erreurs non-Gaussiens. Contrairement aux procédures de test d’exogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester l’exogénéité partielle d’un sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme d’erreur quadratique moyenne) que l’estimateur IV usuel lorsque les variables instrumentales sont faibles et l’endogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu d’équation du salaire [Angist et Krueger (1991, 1999)] et les rendements d’échelle [Nerlove (1963)]. Nos résultats suggèrent que l’éducation de la mère expliquerait le décrochage de son fils, que l’output est une variable endogène dans l’estimation du coût de la firme et que le prix du fuel en est un instrument valide pour l’output. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. D’abord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque l’identification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test n’est en général plus valide. Cet essai développe une procédure d’inférence robuste à l’identification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à l’hétéroscédasticité et l’autocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests d’exogénéité partielle robustes à l’identification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même s’il y a un problème d’identification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent l’estimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme l’estimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que l’estimateur IV usuel lorsque les instruments sont faibles et l’endogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à l’estimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le modèle de rendements à l’éducation. Dans la première application, les études antérieures ont conclu que les instruments n’étaient pas trop faibles [Dufour et Taamouti (2007)] alors qu’ils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cet article étudie la sensibilité des estimations de certaines variables explicatives de la croissance économique dans des régressions en coupe transversale sur un ensemble de pays. Il applique un modèle modifié de l’analyse de sensibilité de Leamer (1983, 1985). Mes résultats confirment la conclusion de Levine and Renelt (1992), toutefois, je montre que plus de variables sont solidement corrélées à la croissance économique. Entre 1990-2010, je trouve que huit sur vingt cinq variables ont des coefficients significatifs et sont solidement corrélées à la croissance de long terme, notamment, les parts de l’investissement et des dépenses étatiques dans le PIB, la primauté du droit et une variable dichotomique pour les pays subsahariens. Je trouve aussi une preuve empirique solide de l'hypothèse de la convergence conditionnelle, ce qui est cohérent avec le modèle de croissance néoclassique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Le but de ce mémoire de maîtrise est de décrire les propriétés de la loi double Pareto-lognormale, de montrer comment on peut introduire des variables explicatives dans le modèle et de présenter son large potentiel d'applications dans le domaine de la science actuarielle et de la finance. Tout d'abord, nous donnons la définition de la loi double Pareto-lognormale et présentons certaines de ses propriétés basées sur les travaux de Reed et Jorgensen (2004). Les paramètres peuvent être estimés en utilisant la méthode des moments ou le maximum de vraisemblance. Ensuite, nous ajoutons une variable explicative à notre modèle. La procédure d'estimation des paramètres de ce mo-\\dèle est également discutée. Troisièmement, des applications numériques de notre modèle sont illustrées et quelques tests statistiques utiles sont effectués.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La régression logistique est un modèle de régression linéaire généralisée (GLM) utilisé pour des variables à expliquer binaires. Le modèle cherche à estimer la probabilité de succès de cette variable par la linéarisation de variables explicatives. Lorsque l’objectif est d’estimer le plus précisément l’impact de différents incitatifs d’une campagne marketing (coefficients de la régression logistique), l’identification de la méthode d’estimation la plus précise est recherchée. Nous comparons, avec la méthode MCMC d’échantillonnage par tranche, différentes densités a priori spécifiées selon différents types de densités, paramètres de centralité et paramètres d’échelle. Ces comparaisons sont appliquées sur des échantillons de différentes tailles et générées par différentes probabilités de succès. L’estimateur du maximum de vraisemblance, la méthode de Gelman et celle de Genkin viennent compléter le comparatif. Nos résultats démontrent que trois méthodes d’estimations obtiennent des estimations qui sont globalement plus précises pour les coefficients de la régression logistique : la méthode MCMC d’échantillonnage par tranche avec une densité a priori normale centrée en 0 de variance 3,125, la méthode MCMC d’échantillonnage par tranche avec une densité Student à 3 degrés de liberté aussi centrée en 0 de variance 3,125 ainsi que la méthode de Gelman avec une densité Cauchy centrée en 0 de paramètre d’échelle 2,5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper assesses the empirical performance of an intertemporal option pricing model with latent variables which generalizes the Hull-White stochastic volatility formula. Using this generalized formula in an ad-hoc fashion to extract two implicit parameters and forecast next day S&P 500 option prices, we obtain similar pricing errors than with implied volatility alone as in the Hull-White case. When we specialize this model to an equilibrium recursive utility model, we show through simulations that option prices are more informative than stock prices about the structural parameters of the model. We also show that a simple method of moments with a panel of option prices provides good estimates of the parameters of the model. This lays the ground for an empirical assessment of this equilibrium model with S&P 500 option prices in terms of pricing errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dans Ce Texte Nous Examinons les Effets de la Loi du Zonage Agricole du Quebec, Proclame En Decembre 1978 Sur le Prix du Sol Dans une Banlieu de Montreal. a L'aide de Donnees Sur les Transactions Normales Faites a Carignan et Saint-Mathias de 1975 a 1981, Nous Estimons, a L'aide des Moindres Carrees Ordinaires, une Equation de Determination du Prix Par Acre Avec Comme Variables Independantes la Dimension du Lot, la Distance de Montreal, les Services Disponibles (Egouts,...) et le Zonage Agricole (Ou Non) du Sol. Nos Resultats Nous Indiquent Que le Zonage Agricole Reduit le Prix D'un Acre de Sol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contexte. Les études cas-témoins sont très fréquemment utilisées par les épidémiologistes pour évaluer l’impact de certaines expositions sur une maladie particulière. Ces expositions peuvent être représentées par plusieurs variables dépendant du temps, et de nouvelles méthodes sont nécessaires pour estimer de manière précise leurs effets. En effet, la régression logistique qui est la méthode conventionnelle pour analyser les données cas-témoins ne tient pas directement compte des changements de valeurs des covariables au cours du temps. Par opposition, les méthodes d’analyse des données de survie telles que le modèle de Cox à risques instantanés proportionnels peuvent directement incorporer des covariables dépendant du temps représentant les histoires individuelles d’exposition. Cependant, cela nécessite de manipuler les ensembles de sujets à risque avec précaution à cause du sur-échantillonnage des cas, en comparaison avec les témoins, dans les études cas-témoins. Comme montré dans une étude de simulation précédente, la définition optimale des ensembles de sujets à risque pour l’analyse des données cas-témoins reste encore à être élucidée, et à être étudiée dans le cas des variables dépendant du temps. Objectif: L’objectif général est de proposer et d’étudier de nouvelles versions du modèle de Cox pour estimer l’impact d’expositions variant dans le temps dans les études cas-témoins, et de les appliquer à des données réelles cas-témoins sur le cancer du poumon et le tabac. Méthodes. J’ai identifié de nouvelles définitions d’ensemble de sujets à risque, potentiellement optimales (le Weighted Cox model and le Simple weighted Cox model), dans lesquelles différentes pondérations ont été affectées aux cas et aux témoins, afin de refléter les proportions de cas et de non cas dans la population source. Les propriétés des estimateurs des effets d’exposition ont été étudiées par simulation. Différents aspects d’exposition ont été générés (intensité, durée, valeur cumulée d’exposition). Les données cas-témoins générées ont été ensuite analysées avec différentes versions du modèle de Cox, incluant les définitions anciennes et nouvelles des ensembles de sujets à risque, ainsi qu’avec la régression logistique conventionnelle, à des fins de comparaison. Les différents modèles de régression ont ensuite été appliqués sur des données réelles cas-témoins sur le cancer du poumon. Les estimations des effets de différentes variables de tabac, obtenues avec les différentes méthodes, ont été comparées entre elles, et comparées aux résultats des simulations. Résultats. Les résultats des simulations montrent que les estimations des nouveaux modèles de Cox pondérés proposés, surtout celles du Weighted Cox model, sont bien moins biaisées que les estimations des modèles de Cox existants qui incluent ou excluent simplement les futurs cas de chaque ensemble de sujets à risque. De plus, les estimations du Weighted Cox model étaient légèrement, mais systématiquement, moins biaisées que celles de la régression logistique. L’application aux données réelles montre de plus grandes différences entre les estimations de la régression logistique et des modèles de Cox pondérés, pour quelques variables de tabac dépendant du temps. Conclusions. Les résultats suggèrent que le nouveau modèle de Cox pondéré propose pourrait être une alternative intéressante au modèle de régression logistique, pour estimer les effets d’expositions dépendant du temps dans les études cas-témoins

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le biais de confusion est un défi majeur des études observationnelles, surtout s'ils sont induits par des caractéristiques difficiles, voire impossibles, à mesurer dans les banques de données administratives de soins de santé. Un des biais de confusion souvent présents dans les études pharmacoépidémiologiques est la prescription sélective (en anglais « prescription channeling »), qui se manifeste lorsque le choix du traitement dépend de l'état de santé du patient et/ou de son expérience antérieure avec diverses options thérapeutiques. Parmi les méthodes de contrôle de ce biais, on retrouve le score de comorbidité, qui caractérise l'état de santé d'un patient à partir de médicaments délivrés ou de diagnostics médicaux rapportés dans les données de facturations des médecins. La performance des scores de comorbidité fait cependant l'objet de controverses car elle semble varier de façon importante selon la population d'intérêt. Les objectifs de cette thèse étaient de développer, valider, et comparer les performances de deux scores de comorbidité (un qui prédit le décès et l’autre qui prédit l’institutionnalisation), développés à partir des banques de services pharmaceutiques de la Régie de l'assurance-maladie du Québec (RAMQ) pour leur utilisation dans la population âgée. Cette thèse vise également à déterminer si l'inclusion de caractéristiques non rapportées ou peu valides dans les banques de données administratives (caractéristiques socio-démographiques, troubles mentaux ou du sommeil), améliore la performance des scores de comorbidité dans la population âgée. Une étude cas-témoins intra-cohorte fut réalisée. La cohorte source consistait en un échantillon aléatoire de 87 389 personnes âgées vivant à domicile, répartie en une cohorte de développement (n=61 172; 70%) et une cohorte de validation (n=26 217; 30%). Les données ont été obtenues à partir des banques de données de la RAMQ. Pour être inclus dans l’étude, les sujets devaient être âgés de 66 ans et plus, et être membres du régime public d'assurance-médicaments du Québec entre le 1er janvier 2000 et le 31 décembre 2009. Les scores ont été développés à partir de la méthode du Framingham Heart Study, et leur performance évaluée par la c-statistique et l’aire sous les courbes « Receiver Operating Curves ». Pour le dernier objectif qui est de documenter l’impact de l’ajout de variables non-mesurées ou peu valides dans les banques de données au score de comorbidité développé, une étude de cohorte prospective (2005-2008) a été réalisée. La population à l'étude, de même que les données, sont issues de l'Étude sur la Santé des Aînés (n=1 494). Les variables d'intérêt incluaient statut marital, soutien social, présence de troubles de santé mentale ainsi que troubles du sommeil. Tel que décrit dans l'article 1, le Geriatric Comorbidity Score (GCS) basé sur le décès, a été développé et a présenté une bonne performance (c-statistique=0.75; IC95% 0.73-0.78). Cette performance s'est avérée supérieure à celle du Chronic Disease Score (CDS) lorsqu'appliqué dans la population à l'étude (c-statistique du CDS : 0.47; IC 95%: 0.45-0.49). Une revue de littérature exhaustive a montré que les facteurs associés au décès étaient très différents de ceux associés à l’institutionnalisation, justifiant ainsi le développement d'un score spécifique pour prédire le risque d'institutionnalisation. La performance de ce dernier s'est avérée non statistiquement différente de celle du score de décès (c-statistique institutionnalisation : 0.79 IC95% 0.77-0.81). L'inclusion de variables non rapportées dans les banques de données administratives n'a amélioré que de 11% la performance du score de décès; le statut marital et le soutien social ayant le plus contribué à l'amélioration observée. En conclusion, de cette thèse, sont issues trois contributions majeures. D'une part, il a été démontré que la performance des scores de comorbidité basés sur le décès dépend de la population cible, d'où l'intérêt du Geriatric Comorbidity Score, qui fut développé pour la population âgée vivant à domicile. D'autre part, les médicaments associés au risque d'institutionnalisation diffèrent de ceux associés au risque de décès dans la population âgé, justifiant ainsi le développement de deux scores distincts. Cependant, les performances des deux scores sont semblables. Enfin, les résultats indiquent que, dans la population âgée, l'absence de certaines caractéristiques ne compromet pas de façon importante la performance des scores de comorbidité déterminés à partir de banques de données d'ordonnances. Par conséquent, les scores de comorbidité demeurent un outil de recherche important pour les études observationnelles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’intérêt principal de cette recherche porte sur la validation d’une méthode statistique en pharmaco-épidémiologie. Plus précisément, nous allons comparer les résultats d’une étude précédente réalisée avec un devis cas-témoins niché dans la cohorte utilisé pour tenir compte de l’exposition moyenne au traitement : – aux résultats obtenus dans un devis cohorte, en utilisant la variable exposition variant dans le temps, sans faire d’ajustement pour le temps passé depuis l’exposition ; – aux résultats obtenus en utilisant l’exposition cumulative pondérée par le passé récent ; – aux résultats obtenus selon la méthode bayésienne. Les covariables seront estimées par l’approche classique ainsi qu’en utilisant l’approche non paramétrique bayésienne. Pour la deuxième le moyennage bayésien des modèles sera utilisé pour modéliser l’incertitude face au choix des modèles. La technique utilisée dans l’approche bayésienne a été proposée en 1997 mais selon notre connaissance elle n’a pas été utilisée avec une variable dépendante du temps. Afin de modéliser l’effet cumulatif de l’exposition variant dans le temps, dans l’approche classique la fonction assignant les poids selon le passé récent sera estimée en utilisant des splines de régression. Afin de pouvoir comparer les résultats avec une étude précédemment réalisée, une cohorte de personnes ayant un diagnostique d’hypertension sera construite en utilisant les bases des données de la RAMQ et de Med-Echo. Le modèle de Cox incluant deux variables qui varient dans le temps sera utilisé. Les variables qui varient dans le temps considérées dans ce mémoire sont iv la variable dépendante (premier évènement cérébrovasculaire) et une des variables indépendantes, notamment l’exposition

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La présente recherche a pour objectif d’étudier les effets que peuvent exercer la conception du travail sur le type de conflit qui émerge en milieu de travail. La notion de conception du travail se divise en trois dimensions, soit les caractéristiques reliées à la tâche, les caractéristiques reliées aux connaissances et les caractéristiques sociales. Ces dimensions sont mises en relation avec les deux types de conflit en milieu de travail, soit le conflit relié à la tâche et le conflit relié à la relation. Cette recherche vise également à vérifier l’effet modérateur des traits de personnalités sur les relations entre les dimensions de la conception du travail et celles du conflit en milieu de travail. Cette recherche est basée sur 473 participants qui occupent un emploi rémunéré et qui ont vécu une situation de conflit en milieu de travail allant jusqu’à 6 mois avant la période de sondage, allant du 14 au 18 janvier 2012. Les résultats indiquent qu’il n’y a pas de relations particulières entre la conception du travail et le type de conflit en milieu de travail. En ce qui a trait aux effets des traits de personnalité, les résultats indiquent que ces variables n’ont aucuns effets modérateurs sur la relation entre la conception du travail et le type de conflit en milieu de travail. Globalement, les résultats ne démontrent aucune relation entre la conception du travail et les types de conflit en milieu de travail, ou les effets modérateurs que les traits de personnalités peuvent avoir sur ces relations.