3 resultados para Euclidean geometry
em Université de Montréal, Canada
Resumo:
La division cellulaire asymétrique (DCA) consiste en une division pendant laquelle des déterminants cellulaires sont distribués préférentiellement dans une des deux cellules filles. Par l’action de ces déterminants, la DCA générera donc deux cellules filles différentes. Ainsi, la DCA est importante pour générer la diversité cellulaire et pour maintenir l’homéostasie de certaines cellules souches. Pour induire une répartition asymétrique des déterminants cellulaires, le positionnement du fuseau mitotique doit être très bien contrôlé. Fréquemment ceci génère deux cellules filles de tailles différentes, car le fuseau mitotique n’est pas centré pendant la mitose, ce qui induit un positionnement asymétrique du sillon de clivage. Bien qu’un complexe impliquant des GTPases hétérotrimériques et des protéines liant les microtubules au cortex ait été impliqué directement dans le positionnement du fuseau mitotique, le mécanisme exact induisant le positionnement asymétrique du fuseau durant la DCA n'est pas encore compris. Des études récentes suggèrent qu’une régulation asymétrique du cytosquelette d’actine pourrait être responsable de ce positionnement asymétrique du faisceau mitotique. Donc, nous émettons l'hypothèse que des contractions asymétriques d’actine pendant la division cellulaire pourraient déplacer le fuseau mitotique et le sillon de clivage pour créer une asymétrie cellulaire. Nos résultats préliminaires ont démontré que le blebbing cortical, qui est une indication de tension corticale et de contraction, se produit préférentiellement dans la moitié antérieure de cellule précurseur d’organes sensoriels (SOP) pendant le stage de télophase. Nos données soutiennent l'idée que les petites GTPases de la famille Rho pourraient être impliqués dans la régulation du fuseau mitotique et ainsi contrôler la DCA des SOP. Les paramètres expérimentaux développés pour cette thèse, pour étudier la régulation de l’orientation et le positionnement du fuseau mitotique, ouvrirons de nouvelles avenues pour contrôler ce processus, ce qui pourrait être utile pour freiner la progression de cellules cancéreuses. Les résultats préliminaires de ce projet proposeront une manière dont les petites GTPases de la famille Rho peuvent être impliqués dans le contrôle de la division cellulaire asymétrique in vivo dans les SOP. Les modèles théoriques qui sont expliqués dans cette étude pourront servir à améliorer les méthodes quantitatives de biologie cellulaire de la DCA.
Resumo:
L'objectif de ce mémoire est de démontrer certaines propriétés géométriques des fonctions propres de l'oscillateur harmonique quantique. Nous étudierons les domaines nodaux, c'est-à-dire les composantes connexes du complément de l'ensemble nodal. Supposons que les valeurs propres ont été ordonnées en ordre croissant. Selon un théorème fondamental dû à Courant, une fonction propre associée à la $n$-ième valeur propre ne peut avoir plus de $n$ domaines nodaux. Ce résultat a été prouvé initialement pour le laplacien de Dirichlet sur un domaine borné mais il est aussi vrai pour l'oscillateur harmonique quantique isotrope. Le théorème a été amélioré par Pleijel en 1956 pour le laplacien de Dirichlet. En effet, on peut donner un résultat asymptotique plus fort pour le nombre de domaines nodaux lorsque les valeurs propres tendent vers l'infini. Dans ce mémoire, nous prouvons un résultat du même type pour l'oscillateur harmonique quantique isotrope. Pour ce faire, nous utiliserons une combinaison d'outils classiques de la géométrie spectrale (dont certains ont été utilisés dans la preuve originale de Pleijel) et de plusieurs nouvelles idées, notamment l'application de certaines techniques tirées de la géométrie algébrique et l'étude des domaines nodaux non-bornés.
Resumo:
La présente thèse porte sur différentes questions émanant de la géométrie spectrale. Ce domaine des mathématiques fondamentales a pour objet d'établir des liens entre la géométrie et le spectre d'une variété riemannienne. Le spectre d'une variété compacte fermée M munie d'une métrique riemannienne $g$ associée à l'opérateur de Laplace-Beltrami est une suite de nombres non négatifs croissante qui tend vers l’infini. La racine carrée de ces derniers représente une fréquence de vibration de la variété. Cette thèse présente quatre articles touchant divers aspects de la géométrie spectrale. Le premier article, présenté au Chapitre 1 et intitulé « Superlevel sets and nodal extrema of Laplace eigenfunctions », porte sur la géométrie nodale d'opérateurs elliptiques. L’objectif de mes travaux a été de généraliser un résultat de L. Polterovich et de M. Sodin qui établit une borne sur la distribution des extrema nodaux sur une surface riemannienne pour une assez vaste classe de fonctions, incluant, entre autres, les fonctions propres associées à l'opérateur de Laplace-Beltrami. La preuve fournie par ces auteurs n'étant valable que pour les surfaces riemanniennes, je prouve dans ce chapitre une approche indépendante pour les fonctions propres de l’opérateur de Laplace-Beltrami dans le cas des variétés riemanniennes de dimension arbitraire. Les deuxième et troisième articles traitent d'un autre opérateur elliptique, le p-laplacien. Sa particularité réside dans le fait qu'il est non linéaire. Au Chapitre 2, l'article « Principal frequency of the p-laplacian and the inradius of Euclidean domains » se penche sur l'étude de bornes inférieures sur la première valeur propre du problème de Dirichlet du p-laplacien en termes du rayon inscrit d’un domaine euclidien. Plus particulièrement, je prouve que, si p est supérieur à la dimension du domaine, il est possible d'établir une borne inférieure sans aucune hypothèse sur la topologie de ce dernier. L'étude de telles bornes a fait l'objet de nombreux articles par des chercheurs connus, tels que W. K. Haymann, E. Lieb, R. Banuelos et T. Carroll, principalement pour le cas de l'opérateur de Laplace. L'adaptation de ce type de bornes au cas du p-laplacien est abordée dans mon troisième article, « Bounds on the Principal Frequency of the p-Laplacian », présenté au Chapitre 3 de cet ouvrage. Mon quatrième article, « Wolf-Keller theorem for Neumann Eigenvalues », est le fruit d'une collaboration avec Guillaume Roy-Fortin. Le thème central de ce travail gravite autour de l'optimisation de formes dans le contexte du problème aux valeurs limites de Neumann. Le résultat principal de cet article est que les valeurs propres de Neumann ne sont pas toujours maximisées par l'union disjointe de disques arbitraires pour les domaines planaires d'aire fixée. Le tout est présenté au Chapitre 4 de cette thèse.