2 resultados para Efficient Market Hypothesis
em Université de Montréal, Canada
Resumo:
The first two articles build procedures to simulate vector of univariate states and estimate parameters in nonlinear and non Gaussian state space models. We propose state space speci fications that offer more flexibility in modeling dynamic relationship with latent variables. Our procedures are extension of the HESSIAN method of McCausland[2012]. Thus, they use approximation of the posterior density of the vector of states that allow to : simulate directly from the state vector posterior distribution, to simulate the states vector in one bloc and jointly with the vector of parameters, and to not allow data augmentation. These properties allow to build posterior simulators with very high relative numerical efficiency. Generic, they open a new path in nonlinear and non Gaussian state space analysis with limited contribution of the modeler. The third article is an essay in commodity market analysis. Private firms coexist with farmers' cooperatives in commodity markets in subsaharan african countries. The private firms have the biggest market share while some theoretical models predict they disappearance once confronted to farmers cooperatives. Elsewhere, some empirical studies and observations link cooperative incidence in a region with interpersonal trust, and thus to farmers trust toward cooperatives. We propose a model that sustain these empirical facts. A model where the cooperative reputation is a leading factor determining the market equilibrium of a price competition between a cooperative and a private firm
Resumo:
Uncertainties as to future supply costs of nonrenewable natural resources, such as oil and gas, raise the issue of the choice of supply sources. In a perfectly deterministic world, an efficient use of multiple sources of supply requires that any given market exhausts the supply it can draw from a low cost source before moving on to a higher cost one; supply sources should be exploited in strict sequence of increasing marginal cost, with a high cost source being left untouched as long as a less costly source is available. We find that this may not be the efficient thing to do in a stochastic world. We show that there exist conditions under which it can be efficient to use a risky supply source in order to conserve a cheaper non risky source. The benefit of doing this comes from the fact that it leaves open the possibility of using it instead of the risky source in the event the latter’s future cost conditions suddenly deteriorate. There are also conditions under which it will be efficient to use a more costly non risky source while a less costly risky source is still available. The reason is that this conserves the less costly risky source in order to use it in the event of a possible future drop in its cost.