5 resultados para Docker,ARM,Raspberry PI,single board computer,QEMU,Sabayon Linux,Gentoo Linux
em Université de Montréal, Canada
Resumo:
La radiothérapie stéréotaxique corporelle (SBRT) est une technique couramment employée pour le traitement de tumeurs aux poumons lorsque la chirurgie n’est pas possible ou refusée par le patient. Une complication de l’utilisation de cette méthode provient du mouvement de la tumeur causé par la respiration. Dans ce contexte, la radiothérapie asservie à la respiration (RGRT) peut être bénéfique. Toutefois, la RGRT augmente le temps de traitement en raison de la plus petite proportion de temps pour laquelle le faisceau est actif. En utilisant un faisceau de photons sans filtre égalisateur (FFF), ce problème peut être compensé par le débit de dose plus élevé d’un faisceau FFF. Ce mémoire traite de la faisabilité d’employer la technique de RGRT en combinaison avec l’utilisation un faisceau FFF sur un accélérateur Synergy S (Elekta, Stockholm, Suède) avec une ceinture pneumatique, le Bellows Belt (Philips, Amsterdam, Pays-Bas), comme dispositif de suivi du signal respiratoire. Un Synergy S a été modifié afin de pouvoir livrer un faisceau 6 MV FFF. Des mesures de profils de dose et de rendements en profondeur ont été acquises en cuve à eau pour différentes tailles de champs. Ces mesures ont été utilisées pour créer un modèle du faisceau 6 MV FFF dans le système de planification de traitement Pinnacle3 de Philips. Les mesures ont été comparées au modèle à l’aide de l’analyse gamma avec un critère de 2%, 2 mm. Par la suite, cinq plans SBRT avec thérapie en arc par modulation volumétrique (VMAT) ont été créés avec le modèle 6 MV du Synergy S, avec et sans filtre. Une comparaison des paramètres dosimétriques a été réalisée entre les plans avec et sans filtre pour évaluer la qualité des plans FFF. Les résultats révèlent qu’il est possible de créer des plans SBRT VMAT avec le faisceau 6 MV FFF du Synergy S qui sont cliniquement acceptables (les crières du Radiation Therapy Oncology Group 0618 sont respectés). Aussi, une interface physique de RGRT a été mise au point pour remplir deux fonctions : lire le signal numérique de la ceinture pneumatique Bellows Belt et envoyer une commande d’irradiation binaire au linac. L’activation/désactivation du faisceau du linac se fait par l’entremise d’un relais électromécanique. L’interface comprend un circuit électronique imprimé fait maison qui fonctionne en tandem avec un Raspberry Pi. Un logiciel de RGRT a été développé pour opérer sur le Raspberry Pi. Celui-ci affiche le signal numérique du Bellows Belt et donne l’option de choisir les limites supérieure et inférieure de la fenêtre d’irradiation, de sorte que lorsque le signal de la ceinture se trouve entre ces limites, le faisceau est actif, et inversement lorsque le signal est hors de ces limites. Le logiciel envoie donc une commande d’irradiation au linac de manière automatique en fonction de l’amplitude du signal respiratoire. Finalement, la comparaison entre la livraison d’un traitement standard sans RGRT avec filtre par rapport à un autre plan standard sans RGRT sans filtre démontre que le temps de traitement en mode FFF est réduit en moyenne de 54.1% pour un arc. De la même manière, la comparaison entre la livraison d’un traitement standard sans RGRT avec filtre par rapport à un plan de RGRT (fenêtre d’irradiation de 75%) sans filtre montre que le temps de traitement de RGRT en mode FFF est réduit en moyenne de 27.3% par arc. Toutefois, il n’a pas été possible de livrer des traitements de RGRT avec une fenêtre de moins de 75%. Le linac ne supporte pas une fréquence d’arrêts élevée.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Pour respecter les droits auteur, la version electronique de cette thèse a été dépouillée de ses documents visuels et audio-visuels. La version intégrale de la thèse a été déposée au Service de la gestion des documents et des archives de l'Université de Montréal.
Resumo:
L’objectif de cette thèse par articles est de présenter modestement quelques étapes du parcours qui mènera (on espère) à une solution générale du problème de l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun une différente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte plus général, et dans certains cas elles on tété appliquées ailleurs, mais ceci ne sera pas abordé dans le contexte de cette de thèse. Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike- and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démontrons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand très peu d’exemples étiquetés sont disponibles pour l’entraînement. Partant d’un modèle CPSS, nous construisons ensuite une architecture profonde, la machine de Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de manière à simplifier d’entraînement des machines de Boltzmann profondes qui nécessitent normalement une phase de pré-entraînement glouton pour chaque couche. Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière pratique. Dans le deuxième article, nous revenons au problème d’entraînement joint de machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de modèles, nous introduisons un nouveau critère d’entraînement qui donne naissance aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les MBP-MP sont entraînables en une seule étape et ont un meilleur taux de succès en classification que les MBP classiques. Elles s’entraînent aussi avec des méthodes variationelles standard au lieu de nécessiter un classificateur discriminant pour obtenir un bon taux de succès en classification. Par contre, un des inconvénients de tels modèles est leur incapacité de générer deséchantillons, mais ceci n’est pas trop grave puisque la performance de classification des machines de Boltzmann profondes n’est plus une priorité étant donné les dernières avancées en apprentissage supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont capable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent pas faire, telles que celle de classifier des données incomplètes ou encore celle de combler intelligemment l’information manquante dans ces données incomplètes. Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de transformations importantes du domaine de l’apprentissage à réseaux neuronaux profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par Geoffrey Hinton. Dropout rend possible un entraînement purement supervisé d’architectures de propagation unidirectionnel sans être exposé au danger de sur- entraînement. Le troisième article présenté dans cette thèse introduit une nouvelle fonction d’activation spécialement con ̧cue pour aller avec l’algorithme de Dropout. Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation multi-canal dans un contexte d’apprentissage purement supervisé. Nous démontrons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies par l’utilisation de maxout. Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la transcription d’adresses de maisons à plusieurs chiffres. En combinant maxout avec une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution, nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui des humains sur un ensemble de données coriace constitué de photos prises par les voitures de Google. Ce système a été déployé avec succès chez Google pour lire environ cent million d’adresses de maisons.
Resumo:
Dans cette thèse, nous abordons le contrôle moteur du mouvement du coude à travers deux approches expérimentales : une première étude psychophysique a été effectuée chez les sujets humains, et une seconde implique des enregistrements neurophysiologiques chez le singe. Nous avons recensé plusieurs aspects non résolus jusqu’à présent dans l’apprentissage moteur, particulièrement concernant l’interférence survenant lors de l’adaptation à deux ou plusieurs champs de force anti-corrélés. Nous avons conçu un paradigme où des stimuli de couleur aident les sujets à prédire la nature du champ de force externe actuel avant qu’ils ne l’expérimentent physiquement durant des mouvements d’atteinte. Ces connaissances contextuelles faciliteraient l’adaptation à des champs de forces en diminuant l’interférence. Selon le modèle computationnel de l’apprentissage moteur MOSAIC (MOdular Selection And Identification model for Control), les stimuli de couleur aident les sujets à former « un modèle interne » de chaque champ de forces, à s’en rappeler et à faire la transition entre deux champs de force différents, sans interférence. Dans l’expérience psychophysique, quatre groupes de sujets humains ont exécuté des mouvements de flexion/extension du coude contre deux champs de forces. Chaque force visqueuse était associée à une couleur de l’écran de l’ordinateur et les deux forces étaient anti-corrélées : une force résistante (Vr) a été associée à la couleur rouge de l’écran et l’autre, assistante (Va), à la couleur verte de l’écran. Les deux premiers groupes de sujets étaient des groupes témoins : la couleur de l’écran changeait à chaque bloc de 4 essais, tandis que le champ de force ne changeait pas. Les sujets du groupe témoin Va ne rencontraient que la force assistante Va et les sujets du groupe témoin Vr performaient leurs mouvements uniquement contre une force résistante Vr. Ainsi, dans ces deux groupes témoins, les stimuli de couleur n’étaient pas pertinents pour adapter le mouvement et les sujets ne s’adaptaient qu’à une seule force (Va ou Vr). Dans les deux groupes expérimentaux, cependant, les sujets expérimentaient deux champs de forces différents dans les différents blocs d’essais (4 par bloc), associés à ces couleurs. Dans le premier groupe expérimental (groupe « indice certain », IC), la relation entre le champ de force et le stimulus (couleur de l’écran) était constante. La couleur rouge signalait toujours la force Vr tandis que la force Va était signalée par la couleur verte. L’adaptation aux deux forces anti-corrélées pour le groupe IC s’est avérée significative au cours des 10 jours d’entraînement et leurs mouvements étaient presque aussi bien ajustés que ceux des deux groupes témoins qui n’avaient expérimenté qu’une seule des deux forces. De plus, les sujets du groupe IC ont rapidement démontré des changements adaptatifs prédictifs dans leurs sorties motrices à chaque changement de couleur de l’écran, et ceci même durant leur première journée d’entraînement. Ceci démontre qu’ils pouvaient utiliser les stimuli de couleur afin de se rappeler de la commande motrice adéquate. Dans le deuxième groupe expérimental, la couleur de l’écran changeait régulièrement de vert à rouge à chaque transition de blocs d’essais, mais le changement des champs de forces était randomisé par rapport aux changements de couleur (groupe « indice-incertain », II). Ces sujets ont pris plus de temps à s’adapter aux champs de forces que les 3 autres groupes et ne pouvaient pas utiliser les stimuli de couleurs, qui n’étaient pas fiables puisque non systématiquement reliés aux champs de forces, pour faire des changements prédictifs dans leurs sorties motrices. Toutefois, tous les sujets de ce groupe ont développé une stratégie ingénieuse leur permettant d’émettre une réponse motrice « par défaut » afin de palper ou de sentir le type de la force qu’ils allaient rencontrer dans le premier essai de chaque bloc, à chaque changement de couleur. En effet, ils utilisaient la rétroaction proprioceptive liée à la nature du champ de force afin de prédire la sortie motrice appropriée pour les essais qui suivent, jusqu’au prochain changement de couleur d’écran qui signifiait la possibilité de changement de force. Cette stratégie était efficace puisque la force demeurait la même dans chaque bloc, pendant lequel la couleur de l’écran restait inchangée. Cette étude a démontré que les sujets du groupe II étaient capables d’utiliser les stimuli de couleur pour extraire des informations implicites et explicites nécessaires à la réalisation des mouvements, et qu’ils pouvaient utiliser ces informations pour diminuer l’interférence lors de l’adaptation aux forces anti-corrélées. Les résultats de cette première étude nous ont encouragés à étudier les mécanismes permettant aux sujets de se rappeler d’habiletés motrices multiples jumelées à des stimuli contextuels de couleur. Dans le cadre de notre deuxième étude, nos expériences ont été effectuées au niveau neuronal chez le singe. Notre but était alors d’élucider à quel point les neurones du cortex moteur primaire (M1) peuvent contribuer à la compensation d’un large éventail de différentes forces externes durant un mouvement de flexion/extension du coude. Par cette étude, nous avons testé l’hypothèse liée au modèle MOSAIC, selon laquelle il existe plusieurs modules contrôleurs dans le cervelet qui peuvent prédire chaque contexte et produire un signal de sortie motrice approprié pour un nombre restreint de conditions. Selon ce modèle, les neurones de M1 recevraient des entrées de la part de plusieurs contrôleurs cérébelleux spécialisés et montreraient ensuite une modulation appropriée de la réponse pour une large variété de conditions. Nous avons entraîné deux singes à adapter leurs mouvements de flexion/extension du coude dans le cadre de 5 champs de force différents : un champ nul ne présentant aucune perturbation, deux forces visqueuses anti-corrélées (assistante et résistante) qui dépendaient de la vitesse du mouvement et qui ressemblaient à celles utilisées dans notre étude psychophysique chez l’homme, une force élastique résistante qui dépendait de la position de l’articulation du coude et, finalement, un champ viscoélastique comportant une sommation linéaire de la force élastique et de la force visqueuse. Chaque champ de force était couplé à une couleur d’écran de l’ordinateur, donc nous avions un total de 5 couleurs différentes associées chacune à un champ de force (relation fixe). Les singes étaient bien adaptés aux 5 conditions de champs de forces et utilisaient les stimuli contextuels de couleur pour se rappeler de la sortie motrice appropriée au contexte de forces associé à chaque couleur, prédisant ainsi leur sortie motrice avant de sentir les effets du champ de force. Les enregistrements d’EMG ont permis d’éliminer la possibilité de co-contractions sous-tendant ces adaptations, étant donné que le patron des EMG était approprié pour compenser chaque condition de champ de force. En parallèle, les neurones de M1 ont montré des changements systématiques dans leurs activités, sur le plan unitaire et populationnel, dans chaque condition de champ de force, signalant les changements requis dans la direction, l’amplitude et le décours temporel de la sortie de force musculaire nécessaire pour compenser les 5 conditions de champs de force. Les changements dans le patron de réponse pour chaque champ de force étaient assez cohérents entre les divers neurones de M1, ce qui suggère que la plupart des neurones de M1 contribuent à la compensation de toutes les conditions de champs de force, conformément aux prédictions du modèle MOSAIC. Aussi, cette modulation de l’activité neuronale ne supporte pas l’hypothèse d’une organisation fortement modulaire de M1.