2 resultados para Diagrama de Goodman

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cet essai a pour objet le rôle de la notion de fiction dans les domaines de l’art et de la science. Essentiellement, je soutiens que « fiction » dans ce contexte est « a category mistake » (concept versus genre) et je crois que cet essai peut réussir à « cuire du pain philosophique » en dévoilant une dispute verbale. Je suggère donc de clore un débat philosophique dans son intégralité. Je présente un exposé du style de fictionnalisme abordé par Catherine Z. Elgin et Nelson Goodman (que ce soit dans le contexte des arts ou des sciences, nous parvenons à la compréhension grâce à des fictions sous formes de « vérités non littérales ») et j’explore le concept de la fiction. Je soutiens que les représentations (textes descriptifs de toutes sortes, incluant les modèles) sont constituées d’éléments fictionnels et d’éléments facettés (à l’exception de la version idéale possible ou impossible, c’est-à-dire dans l’esprit de Dieu, qui n’inclurait que les facettes.) La compréhension ne peut provenir de la fiction, mais plutôt d’éléments facettés ordonnés de manière à créer une compréhension qui conduit généralement à des prédictions, des explications et des manipulations. Je définis les facettes comme ayant des caractéristiques organisées, alors que les fictions ont des caractéristiques désorganisées. La fiction dans son intégralité est donc, par définition, l’expression du néant (of nothing), ou en matière de langues idéales (mathématiques), l’expression de contradiction. Les fictions et les facettes relèvent des représentations qui sont elles-mêmes primitives. Les textes descriptifs sont donc fictionnels par degré. Les récits qui sont très fictionnels ont une certaine valeur (souvent ludique) mais contiennent toujours au moins une facette. En fin de compte, toutes les activités représentationnelles devraient être considérées irréelles, incomplètes, bien que parfois connectées à la réalité, c’est-à-dire, prises entre une description réaliste facettée et une fiction dans son intégralité.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les commotions cérébrales ont longtemps été considérées comme une blessure ne comportant que peu ou pas de conséquences. Cependant, la mise à la retraite forcée de plusieurs athlètes de haut niveau, liée au fait d'avoir subi des commotions cérébrales multiples, a porté cette question au premier plan de la culture scientifique et sportive. Malgré la sensibilisation croissante du public et la compréhension scientifique accrue des commotions cérébrales, il reste encore beaucoup d’inconnus au sujet de ces blessures. En effet, il est difficile de comprendre comment cette atteinte peut avoir des effets si profonds malgré le fait qu’elle n’entraîne apparemment pas de conséquences physiques apparentes lorsque les techniques traditionnelles d’imagerie cérébrale sont utilisées. Les techniques de neuroimagerie fonctionnelle ont cependant contribué à répondre aux nombreuses questions entourant les conséquences des commotions cérébrales ainsi qu'à accroître la compréhension générale de la physiopathologie de commotions cérébrales. Bien que les techniques de base telles que l'imagerie structurelle comme les scans TC et IRM soient incapables de détecter des changements structurels dans la grande majorité des cas (Ellemberg, Henry, Macciocchi, Guskiewicz, & Broglio, 2009; Johnston, Ptito, Chankowsky, & Chen, 2001), d'autres techniques plus précises et plus sensibles ont été en mesure de détecter avec succès des changements dans le cerveau commotionné. Des études d’IRM fonctionelle ont entre autres établi une solide relation entre les altérations fonctionnelles et les symptômes post-commotionels (Chen, Johnston, Collie, McCrory, & Ptito, 2007; Chen et al., 2004; Chen, Johnston, Petrides, & Ptito, 2008; Fazio, Lovell, Pardini, & Collins, 2007). Les mesures électrophysiologiques telles que les potentiels évoqués cognitifs (ERP) (Gaetz, Goodman, & Weinberg, 2000; Gaetz & Weinberg, 2000; Theriault, De Beaumont, Gosselin, Filipinni, & Lassonde, 2009; Theriault, De Beaumont, Tremblay, Lassonde, & Jolicoeur, 2010) et la stimulation magnétique transcrânienne ou SMT (De Beaumont, Brisson, Lassonde, & Jolicoeur, 2007; De Beaumont, Lassonde, Leclerc, & Theoret, 2007; De Beaumont et al., 2009) ont systématiquement démontré des altérations fonctionnelles chez les athlètes commotionnés. Cependant, très peu de recherches ont tenté d'explorer davantage certaines conséquences spécifiques des commotions cérébrales, entre autres sur les plans structural et métabolique. La première étude de cette thèse a évalué les changements structurels chez les athlètes commotionnés à l’aide de l'imagerie en tenseur de diffusion (DTI) qui mesure la diffusion de l'eau dans la matière blanche, permettant ainsi de visualiser des altérations des fibres nerveuses. Nous avons comparé les athlètes commotionnés à des athlètes de contrôle non-commotionnés quelques jours après la commotion et de nouveau six mois plus tard. Nos résultats indiquent un patron constant de diffusion accrue le long des voies cortico-spinales et dans la partie du corps calleux reliant les régions motrices. De plus, ces changements étaient encore présents six mois après la commotion, ce qui suggère que les effets de la commotion cérébrale persistent bien après la phase aiguë. Les deuxième et troisième études ont employé la spectroscopie par résonance magnétique afin d'étudier les changements neurométaboliques qui se produisent dans le cerveau commotionné. La première de ces études a évalué les changements neurométaboliques, les aspects neuropsychologiques, et la symptomatologie dans la phase aiguë post-commotion. Bien que les tests neuropsychologiques aient été incapables de démontrer des différences entre les athlètes commotionnés et non-commotionnés, des altérations neurométaboliques ont été notées dans le cortex préfrontal dorsolatéral ainsi que dans le cortex moteur primaire, lesquelles se sont avérées corréler avec les symptômes rapportés. La deuxième de ces études a comparé les changements neurométaboliques immédiatement après une commotion cérébrale et de nouveau six mois après l’atteinte. Les résultats ont démontré des altérations dans le cortex préfrontal dorsolatéral et moteur primaire dans la phase aiguë post-traumatique, mais seules les altérations du cortex moteur primaire ont persisté six mois après la commotion. Ces résultats indiquent que les commotions cérébrales peuvent affecter les propriétés physiques du cerveau, spécialement au niveau moteur. Il importe donc de mener davantage de recherches afin de mieux caractériser les effets moteurs des commotions cérébrales sur le plan fonctionnel.