4 resultados para Dependence graphs

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les simulations ont été implémentées avec le programme Java.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nous présentons dans cette thèse des théorèmes de point fixe pour des contractions multivoques définies sur des espaces métriques, et, sur des espaces de jauges munis d’un graphe. Nous illustrons également les applications de ces résultats à des inclusions intégrales et à la théorie des fractales. Cette thèse est composée de quatre articles qui sont présentés dans quatre chapitres. Dans le chapitre 1, nous établissons des résultats de point fixe pour des fonctions multivoques, appelées G-contractions faibles. Celles-ci envoient des points connexes dans des points connexes et contractent la longueur des chemins. Les ensembles de points fixes sont étudiés. La propriété d’invariance homotopique d’existence d’un point fixe est également établie pour une famille de Gcontractions multivoques faibles. Dans le chapitre 2, nous établissons l’existence de solutions pour des systèmes d’inclusions intégrales de Hammerstein sous des conditions de type de monotonie mixte. L’existence de solutions pour des systèmes d’inclusions différentielles avec conditions initiales ou conditions aux limites périodiques est également obtenue. Nos résultats s’appuient sur nos théorèmes de point fixe pour des G-contractions multivoques faibles établis au chapitre 1. Dans le chapitre 3, nous appliquons ces mêmes résultats de point fixe aux systèmes de fonctions itérées assujettis à un graphe orienté. Plus précisément, nous construisons un espace métrique muni d’un graphe G et une G-contraction appropriés. En utilisant les points fixes de cette G-contraction, nous obtenons plus d’information sur les attracteurs de ces systèmes de fonctions itérées. Dans le chapitre 4, nous considérons des contractions multivoques définies sur un espace de jauges muni d’un graphe. Nous prouvons un résultat de point fixe pour des fonctions multivoques qui envoient des points connexes dans des points connexes et qui satisfont une condition de contraction généralisée. Ensuite, nous étudions des systèmes infinis de fonctions itérées assujettis à un graphe orienté (H-IIFS). Nous donnons des conditions assurant l’existence d’un attracteur unique à un H-IIFS. Enfin, nous appliquons notre résultat de point fixe pour des contractions multivoques définies sur un espace de jauges muni d’un graphe pour obtenir plus d’information sur l’attracteur d’un H-IIFS. Plus précisément, nous construisons un espace de jauges muni d’un graphe G et une G-contraction appropriés tels que ses points fixes sont des sous-attracteurs du H-IIFS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a framework for analysis of cross-sectional dependence in the idiosyncratic volatilities of assets using high frequency data. We first consider the estimation of standard measures of dependence in the idiosyncratic volatilities such as covariances and correlations. Next, we study an idiosyncratic volatility factor model, in which we decompose the co-movements in idiosyncratic volatilities into two parts: those related to factors such as the market volatility, and the residual co-movements. When using high frequency data, naive estimators of all of the above measures are biased due to the estimation errors in idiosyncratic volatility. We provide bias-corrected estimators and establish their asymptotic properties. We apply our estimators to high-frequency data on 27 individual stocks from nine different sectors, and document strong cross-sectional dependence in their idiosyncratic volatilities. We also find that on average 74% of this dependence can be explained by the market volatility.