9 resultados para Density functionals
em Université de Montréal, Canada
Resumo:
Affiliation: Pierre Dagenais : Hôpital Maisonneuve-Rosemont, Faculté de médecine, Université de Montréal
Resumo:
Many unit root and cointegration tests require an estimate of the spectral density function at frequency zero at some process. Kernel estimators based on weighted sums of autocovariances constructed using estimated residuals from an AR(1) regression are commonly used. However, it is known that with substantially correlated errors, the OLS estimate of the AR(1) parameter is severely biased. in this paper, we first show that this least squares bias induces a significant increase in the bias and mean-squared error of kernel-based estimators.
Resumo:
La présente thèse traite de la description de systèmes complexes, notamment des polymères et des cuprates, par la théorie de la fonctionnelle de la densité. En premier lieu, la théorie de la fonctionnelle de la densité ainsi que différentes fonctionnelles utilisées pour simuler les matériaux à l’étude sont présentées. Plus spécifiquement, les fonctionnelles LDA et GGA sont décrites et leurs limites sont exposées. De plus, le modèle de Hubbard ainsi que la fonctionnelle LDA+U qui en découle sont abordés dans ce chapitre afin de permettre la simulation des propriétés de matériaux à forte corrélation électronique. Par la suite, les résultats obtenus sur les polymères sont résumés par deux articles. Le premier traite de la variation de la bande interdite entre les polymères pontés et leurs homologues non pontés. Le second se penche sur l’étude de polymères à faible largeur de bande interdite. Dans ce dernier, il sera démontré qu’une fonctionnelle hybride, contenant de l’échange exact, est nécessaire afin de décrire les propriétés électroniques des systèmes à l’étude. Finalement, le dernier chapitre est consacré à l’étude des cuprates supraconducteurs. La LDA+U pouvant rendre compte de la forte localisation dans les orbitales 3d des atomes de cuivre, une étude de l’impact de cette fonctionnelle sur les propriétés électroniques est effectuée. Un dernier article investiguant différents ordres magnétiques dans le La2CuO4 dopé termine le dernier chapitre. On trouve aussi, en annexe, un complément d’information pour le second article et une description de la théorie de la supraconductivité de Bardeen, Cooper et Schrieffer.
Resumo:
Le présent mémoire traite de la description du LaOFeAs, le premier matériau découvert de la famille des pnictures de fer, par la théorie de la fonctionnelle de la densité (DFT). Plus particulièrement, nous allons exposer l’état actuel de la recherche concernant ce matériau avant d’introduire rapidement la DFT. Ensuite, nous allons regarder comment se comparent les paramètres structuraux que nous allons calculer sous différentes phases par rapport aux résultats expérimentaux et avec les autres calculs DFT dans la littérature. Nous allons aussi étudier en détails la structure électronique du matériau sous ses différentes phases magnétiques et structurales. Nous emploierons donc les outils normalement utilisés pour mieux comprendre la structure électronique : structures de bandes, densités d’états, surfaces de Fermi, nesting au niveau de Fermi. Nous tirerons profit de la théorie des groupes afin de trouver les modes phononiques permis par la symétrie de notre cristal. De plus, nous étudierons le couplage électrons-phonons pour quelques modes. Enfin, nous regarderons l’effet de différentes fonctionnelles sur nos résultats pour voir à quel point ceux-ci sont sensibles à ce choix. Ainsi, nous utiliserons la LDA et la PBE, mais aussi la LDA+U et la PBE+U.
Resumo:
Gowers, dans son article sur les matrices quasi-aléatoires, étudie la question, posée par Babai et Sos, de l'existence d'une constante $c>0$ telle que tout groupe fini possède un sous-ensemble sans produit de taille supérieure ou égale a $c|G|$. En prouvant que, pour tout nombre premier $p$ assez grand, le groupe $PSL_2(\mathbb{F}_p)$ (d'ordre noté $n$) ne posséde aucun sous-ensemble sans produit de taille $c n^{8/9}$, il y répond par la négative. Nous allons considérer le probléme dans le cas des groupes compacts finis, et plus particuliérement des groupes profinis $SL_k(\mathbb{Z}_p)$ et $Sp_{2k}(\mathbb{Z}_p)$. La premiére partie de cette thése est dédiée à l'obtention de bornes inférieures et supérieures exponentielles pour la mesure suprémale des ensembles sans produit. La preuve nécessite d'établir préalablement une borne inférieure sur la dimension des représentations non-triviales des groupes finis $SL_k(\mathbb{Z}/(p^n\mathbb{Z}))$ et $Sp_{2k}(\mathbb{Z}/(p^n\mathbb{Z}))$. Notre théoréme prolonge le travail de Landazuri et Seitz, qui considérent le degré minimal des représentations pour les groupes de Chevalley sur les corps finis, tout en offrant une preuve plus simple que la leur. La seconde partie de la thése à trait à la théorie algébrique des nombres. Un polynome monogéne $f$ est un polynome unitaire irréductible à coefficients entiers qui endengre un corps de nombres monogéne. Pour un nombre premier $q$ donné, nous allons montrer, en utilisant le théoréme de densité de Tchebotariov, que la densité des nombres premiers $p$ tels que $t^q -p$ soit monogéne est supérieure ou égale à $(q-1)/q$. Nous allons également démontrer que, quand $q=3$, la densité des nombres premiers $p$ tels que $\mathbb{Q}(\sqrt[3]{p})$ soit non monogéne est supérieure ou égale à $1/9$.
Resumo:
La présente thèse porte sur les calculs utilisant la théorie de la fonctionnelle de la densité (DFT) pour simuler des systèmes dans lesquels les effets à longue portée sont importants. Une emphase particulière est mise sur les calculs des énergies d’excitations, tout particulièrement dans le cadre des applications photovoltaïques. Cette thèse aborde ces calculs sous deux angles. Tout d’abord, des outils DFT déjà bien établis seront utilisés pour simuler des systèmes d’intérêt expérimental. Par la suite, la théorie sous-jacente à la DFT sera explorée, ses limites seront identifiées et de nouveaux développements théoriques remédiant à ceux-ci seront proposés. Ainsi, dans la première partie de cette thèse, des calculs numériques utilisant la DFT et la théorie de la fonctionnelle de la densité dépendante du temps (TDDFT) telles qu’implémentées dans le logiciel Gaussian [1] sont faits avec des fonctionnelles courantes sur des molécules et des polymères d’intérêt expérimental. En particulier, le projet présenté dans le chapitre 2 explore l’utilisation de chaînes latérales pour optimiser les propriétés électroniques de polymères déjà couramment utilisés en photovoltaïque organique. Les résultats obtenus montrent qu’un choix judicieux de chaînes latérales permet de contrôler les propriétés électroniques de ces polymères et d’augmenter l’efficacité des cellules photovoltaïques les utilisant. Par la suite, le projet présenté dans le chapitre 3 utilise la TDDFT pour explorer les propriétés optiques de deux polymères, le poly-3-hexyl-thiophène (P3HT) et le poly-3-hexyl- sélénophène (P3HS), ainsi que leur mélange, dans le but d’appuyer les observations expérimentales indiquant la formation d’exciplexe dans ces derniers. Les calculs numériques effectués dans la première partie de cette thèse permettent de tirer plusieurs conclusions intéressantes, mais mettent également en évidence certaines limites de la DFT et de la TDDFT pour le traitement des états excités, dues au traitement approximatif de l’interaction coulombienne à longue portée. Ainsi, la deuxième partie de cette thèse revient aux fondements théoriques de la DFT. Plus précisément, dans le chapitre 4, une série de fonctionnelles modélisant plus précisément l’interaction coulombienne à longue portée grâce à une approche non-locale est élaborée. Ces fonctionnelles sont basées sur la WDA (weighted density approximation), qui est modifiée afin d’imposer plusieurs conditions exactes qui devraient être satisfaites par le trou d’échange. Ces fonctionnelles sont ensuite implémentées dans le logiciel Gaussian [1] et leurs performances sont évaluées grâce à des tests effectués sur une série de molécules et d’atomes. Les résultats obtenus indiquent que plusieurs de ces fonctionnelles donnent de meilleurs résultats que la WDA. De plus, ils permettrent de discuter de l’importance relative de satisfaire chacune des conditions exactes.
Resumo:
Dans ce travail, nous étendons le nombre de conditions physiques actuellement con- nues du trou d’échange exact avec la dérivation de l’expansion de quatrième ordre du trou d’échange sphérique moyenne exacte. Nous comparons les expansions de deux- ième et de quatrième ordre avec le trou d’échange exact pour des systèmes atomiques et moléculaires. Nous avons constaté que, en général, l’expansion du quatrième ordre reproduit plus fidèlement le trou d’échange exact pour les petites valeurs de la distance interélectronique. Nous démontrons que les ensembles de base de type gaussiennes ont une influence significative sur les termes de cette nouvelle condition, en étudiant com- ment les oscillations causées par ces ensembles de bases affectent son premier terme. Aussi, nous proposons quatre modèles de trous d’échange analytiques auxquels nous imposons toutes les conditions actuellement connues du trou d’échange exact et la nou- velle présentée dans ce travail. Nous évaluons la performance des modèles en calculant des énergies d’échange et ses contributions à des énergies d’atomisation. On constate que les oscillations causeés par les bases de type gaussiennes peuvent compromettre la précision et la solution des modèles.