3 resultados para Data Mining and Machine Learning

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les fichiers sons qui accompagne mon document sont au format midi. Le programme que nous avons développés pour ce travail est en language Python.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triple quadrupole mass spectrometers coupled with high performance liquid chromatography are workhorses in quantitative bioanalyses. It provides substantial benefits including reproducibility, sensitivity and selectivity for trace analysis. Selected Reaction Monitoring allows targeted assay development but data sets generated contain very limited information. Data mining and analysis of non-targeted high-resolution mass spectrometry profiles of biological samples offer the opportunity to perform more exhaustive assessments, including quantitative and qualitative analysis. The objectives of this study was to test method precision and accuracy, statistically compare bupivacaine drug concentration in real study samples and verify if high resolution and accurate mass data collected in scan mode can actually permit retrospective data analysis, more specifically, extract metabolite related information. The precision and accuracy data presented using both instruments provided equivalent results. Overall, the accuracy was ranging from 106.2 to 113.2% and the precision observed was from 1.0 to 3.7%. Statistical comparisons using a linear regression between both methods reveal a coefficient of determination (R2) of 0.9996 and a slope of 1.02 demonstrating a very strong correlation between both methods. Individual sample comparison showed differences from -4.5% to 1.6% well within the accepted analytical error. Moreover, post acquisition extracted ion chromatograms at m/z 233.1648 ± 5 ppm (M-56) and m/z 305.2224 ± 5 ppm (M+16) revealed the presence of desbutyl-bupivacaine and three distinct hydroxylated bupivacaine metabolites. Post acquisition analysis allowed us to produce semiquantitative evaluations of the concentration-time profiles for bupicavaine metabolites.