20 resultados para Covariance matrix decomposition

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

On étudie l’application des algorithmes de décomposition matricielles tel que la Factorisation Matricielle Non-négative (FMN), aux représentations fréquentielles de signaux audio musicaux. Ces algorithmes, dirigés par une fonction d’erreur de reconstruction, apprennent un ensemble de fonctions de base et un ensemble de coef- ficients correspondants qui approximent le signal d’entrée. On compare l’utilisation de trois fonctions d’erreur de reconstruction quand la FMN est appliquée à des gammes monophoniques et harmonisées: moindre carré, divergence Kullback-Leibler, et une mesure de divergence dépendente de la phase, introduite récemment. Des nouvelles méthodes pour interpréter les décompositions résultantes sont présentées et sont comparées aux méthodes utilisées précédemment qui nécessitent des connaissances du domaine acoustique. Finalement, on analyse la capacité de généralisation des fonctions de bases apprises par rapport à trois paramètres musicaux: l’amplitude, la durée et le type d’instrument. Pour ce faire, on introduit deux algorithmes d’étiquetage des fonctions de bases qui performent mieux que l’approche précédente dans la majorité de nos tests, la tâche d’instrument avec audio monophonique étant la seule exception importante.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper studies seemingly unrelated linear models with integrated regressors and stationary errors. By adding leads and lags of the first differences of the regressors and estimating this augmented dynamic regression model by feasible generalized least squares using the long-run covariance matrix, we obtain an efficient estimator of the cointegrating vector that has a limiting mixed normal distribution. Simulation results suggest that this new estimator compares favorably with others already proposed in the literature. We apply these new estimators to the testing of purchasing power parity (PPP) among the G-7 countries. The test based on the efficient estimates rejects the PPP hypothesis for most countries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we study the asymptotic distribution of a simple two-stage (Hannan-Rissanen-type) linear estimator for stationary invertible vector autoregressive moving average (VARMA) models in the echelon form representation. General conditions for consistency and asymptotic normality are given. A consistent estimator of the asymptotic covariance matrix of the estimator is also provided, so that tests and confidence intervals can easily be constructed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette étude aborde le thème de l’utilisation des modèles de mélange de lois pour analyser des données de comportements et d’habiletés cognitives mesurées à plusieurs moments au cours du développement des enfants. L’estimation des mélanges de lois multinormales en utilisant l’algorithme EM est expliquée en détail. Cet algorithme simplifie beaucoup les calculs, car il permet d’estimer les paramètres de chaque groupe séparément, permettant ainsi de modéliser plus facilement la covariance des observations à travers le temps. Ce dernier point est souvent mis de côté dans les analyses de mélanges. Cette étude porte sur les conséquences d’une mauvaise spécification de la covariance sur l’estimation du nombre de groupes formant un mélange. La conséquence principale est la surestimation du nombre de groupes, c’est-à-dire qu’on estime des groupes qui n’existent pas. En particulier, l’hypothèse d’indépendance des observations à travers le temps lorsque ces dernières étaient corrélées résultait en l’estimation de plusieurs groupes qui n’existaient pas. Cette surestimation du nombre de groupes entraîne aussi une surparamétrisation, c’est-à-dire qu’on utilise plus de paramètres qu’il n’est nécessaire pour modéliser les données. Finalement, des modèles de mélanges ont été estimés sur des données de comportements et d’habiletés cognitives. Nous avons estimé les mélanges en supposant d’abord une structure de covariance puis l’indépendance. On se rend compte que dans la plupart des cas l’ajout d’une structure de covariance a pour conséquence d’estimer moins de groupes et les résultats sont plus simples et plus clairs à interpréter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Généralement, dans les situations d’hypothèses multiples on cherche à rejeter toutes les hypothèses ou bien une seule d’entre d’elles. Depuis quelques temps on voit apparaître le besoin de répondre à la question : « Peut-on rejeter au moins r hypothèses ? ». Toutefois, les outils statisques pour répondre à cette question sont rares dans la littérature. Nous avons donc entrepris de développer les formules générales de puissance pour les procédures les plus utilisées, soit celles de Bonferroni, de Hochberg et de Holm. Nous avons développé un package R pour le calcul de la taille échantilonnalle pour les tests à hypothèses multiples (multiple endpoints), où l’on désire qu’au moins r des m hypothèses soient significatives. Nous nous limitons au cas où toutes les variables sont continues et nous présentons quatre situations différentes qui dépendent de la structure de la matrice de variance-covariance des données.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets de choix de portefeuilles de grande taille, et de mesure de risque. Le premier chapitre traite du problème d’erreur d’estimation dans les portefeuilles de grande taille, et utilise le cadre d'analyse moyenne-variance. Le second chapitre explore l'importance du risque de devise pour les portefeuilles d'actifs domestiques, et étudie les liens entre la stabilité des poids de portefeuille de grande taille et le risque de devise. Pour finir, sous l'hypothèse que le preneur de décision est pessimiste, le troisième chapitre dérive la prime de risque, une mesure du pessimisme, et propose une méthodologie pour estimer les mesures dérivées. Le premier chapitre améliore le choix optimal de portefeuille dans le cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé par les résultats très décevants obtenus, lorsque la moyenne et la variance sont remplacées par leurs estimations empiriques. Ce problème est amplifié lorsque le nombre d’actifs est grand et que la matrice de covariance empirique est singulière ou presque singulière. Dans ce chapitre, nous examinons quatre techniques de régularisation pour stabiliser l’inverse de la matrice de covariance: le ridge, spectral cut-off, Landweber-Fridman et LARS Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement, qui doit être sélectionné. La contribution principale de cette partie, est de dériver une méthode basée uniquement sur les données pour sélectionner le paramètre de régularisation de manière optimale, i.e. pour minimiser la perte espérée d’utilité. Précisément, un critère de validation croisée qui prend une même forme pour les quatre méthodes de régularisation est dérivé. Les règles régularisées obtenues sont alors comparées à la règle utilisant directement les données et à la stratégie naïve 1/N, selon leur perte espérée d’utilité et leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-sample) et hors-échantillon (out-of-sample) en considérant différentes tailles d’échantillon et nombre d’actifs. Des simulations et de l’illustration empirique menées, il ressort principalement que la régularisation de la matrice de covariance améliore de manière significative la règle de Markowitz basée sur les données, et donne de meilleurs résultats que le portefeuille naïf, surtout dans les cas le problème d’erreur d’estimation est très sévère. Dans le second chapitre, nous investiguons dans quelle mesure, les portefeuilles optimaux et stables d'actifs domestiques, peuvent réduire ou éliminer le risque de devise. Pour cela nous utilisons des rendements mensuelles de 48 industries américaines, au cours de la période 1976-2008. Pour résoudre les problèmes d'instabilité inhérents aux portefeuilles de grandes tailles, nous adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une famille de portefeuilles optimaux et stables, en permettant aux investisseurs de choisir différents pourcentages des composantes principales (ou dégrées de stabilité). Nos tests empiriques sont basés sur un modèle International d'évaluation d'actifs financiers (IAPM). Dans ce modèle, le risque de devise est décomposé en deux facteurs représentant les devises des pays industrialisés d'une part, et celles des pays émergents d'autres part. Nos résultats indiquent que le risque de devise est primé et varie à travers le temps pour les portefeuilles stables de risque minimum. De plus ces stratégies conduisent à une réduction significative de l'exposition au risque de change, tandis que la contribution de la prime risque de change reste en moyenne inchangée. Les poids de portefeuille optimaux sont une alternative aux poids de capitalisation boursière. Par conséquent ce chapitre complète la littérature selon laquelle la prime de risque est importante au niveau de l'industrie et au niveau national dans la plupart des pays. Dans le dernier chapitre, nous dérivons une mesure de la prime de risque pour des préférences dépendent du rang et proposons une mesure du degré de pessimisme, étant donné une fonction de distorsion. Les mesures introduites généralisent la mesure de prime de risque dérivée dans le cadre de la théorie de l'utilité espérée, qui est fréquemment violée aussi bien dans des situations expérimentales que dans des situations réelles. Dans la grande famille des préférences considérées, une attention particulière est accordée à la CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est de plus en plus utilisée pour la construction de portefeuilles et est préconisée pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire de l’inférence sur les mesures proposées. Pour finir, les propriétés des estimateurs proposés sont évaluées à travers une étude Monte-Carlo, et une illustration empirique en utilisant les rendements journaliers du marché boursier américain sur de la période 2000-2011.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La plupart des modèles en statistique classique repose sur une hypothèse sur la distribution des données ou sur une distribution sous-jacente aux données. La validité de cette hypothèse permet de faire de l’inférence, de construire des intervalles de confiance ou encore de tester la fiabilité du modèle. La problématique des tests d’ajustement vise à s’assurer de la conformité ou de la cohérence de l’hypothèse avec les données disponibles. Dans la présente thèse, nous proposons des tests d’ajustement à la loi normale dans le cadre des séries chronologiques univariées et vectorielles. Nous nous sommes limités à une classe de séries chronologiques linéaires, à savoir les modèles autorégressifs à moyenne mobile (ARMA ou VARMA dans le cas vectoriel). Dans un premier temps, au cas univarié, nous proposons une généralisation du travail de Ducharme et Lafaye de Micheaux (2004) dans le cas où la moyenne est inconnue et estimée. Nous avons estimé les paramètres par une méthode rarement utilisée dans la littérature et pourtant asymptotiquement efficace. En effet, nous avons rigoureusement montré que l’estimateur proposé par Brockwell et Davis (1991, section 10.8) converge presque sûrement vers la vraie valeur inconnue du paramètre. De plus, nous fournissons une preuve rigoureuse de l’inversibilité de la matrice des variances et des covariances de la statistique de test à partir de certaines propriétés d’algèbre linéaire. Le résultat s’applique aussi au cas où la moyenne est supposée connue et égale à zéro. Enfin, nous proposons une méthode de sélection de la dimension de la famille d’alternatives de type AIC, et nous étudions les propriétés asymptotiques de cette méthode. L’outil proposé ici est basé sur une famille spécifique de polynômes orthogonaux, à savoir les polynômes de Legendre. Dans un second temps, dans le cas vectoriel, nous proposons un test d’ajustement pour les modèles autorégressifs à moyenne mobile avec une paramétrisation structurée. La paramétrisation structurée permet de réduire le nombre élevé de paramètres dans ces modèles ou encore de tenir compte de certaines contraintes particulières. Ce projet inclut le cas standard d’absence de paramétrisation. Le test que nous proposons s’applique à une famille quelconque de fonctions orthogonales. Nous illustrons cela dans le cas particulier des polynômes de Legendre et d’Hermite. Dans le cas particulier des polynômes d’Hermite, nous montrons que le test obtenu est invariant aux transformations affines et qu’il est en fait une généralisation de nombreux tests existants dans la littérature. Ce projet peut être vu comme une généralisation du premier dans trois directions, notamment le passage de l’univarié au multivarié ; le choix d’une famille quelconque de fonctions orthogonales ; et enfin la possibilité de spécifier des relations ou des contraintes dans la formulation VARMA. Nous avons procédé dans chacun des projets à une étude de simulation afin d’évaluer le niveau et la puissance des tests proposés ainsi que de les comparer aux tests existants. De plus des applications aux données réelles sont fournies. Nous avons appliqué les tests à la prévision de la température moyenne annuelle du globe terrestre (univarié), ainsi qu’aux données relatives au marché du travail canadien (bivarié). Ces travaux ont été exposés à plusieurs congrès (voir par exemple Tagne, Duchesne et Lafaye de Micheaux (2013a, 2013b, 2014) pour plus de détails). Un article basé sur le premier projet est également soumis dans une revue avec comité de lecture (Voir Duchesne, Lafaye de Micheaux et Tagne (2016)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper : a) the consumer’s problem is studied over two periods, the second one involving S states, and the consumer being endowed with S+1 incomes and having access to N financial assets; b) the consumer is then representable by a continuously differentiable system of demands, commodity demands, asset demands and desirabilities of incomes (the S+1 Lagrange multiplier of the S+1 constraints); c) the multipliers can be transformed into subjective Arrow prices; d) the effects of the various incomes on these Arrow prices decompose into a compensation effect (an Antonelli matrix) and a wealth effect; e) the Antonelli matrix has rank S-N, the dimension of incompleteness, if the consumer can financially adjust himself when facing income shocks; f) the matrix has rank S, if not; g) in the first case, the matrix represents a residual aversion; in the second case, a fundamental aversion; the difference between them is an aversion to illiquidity; this last relation corresponds to the Drèze-Modigliani decomposition (1972); h) the fundamental aversion decomposes also into an aversion to impatience and a risk aversion; i) the above decompositions span a third decomposition; if there exists a sure asset (to be defined, the usual definition being too specific), the fundamental aversion admits a three-component decomposition, an aversion to impatience, a residual aversion and an aversion to the illiquidity of risky assets; j) the formulas of the corresponding financial premiums are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Affiliation: Département de Médecine, Faculté de médecine, Université de Montréal & Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CHUM), Hôpital Notre-Dame du CHUM

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les systèmes multiprocesseurs sur puce électronique (On-Chip Multiprocessor [OCM]) sont considérés comme les meilleures structures pour occuper l'espace disponible sur les circuits intégrés actuels. Dans nos travaux, nous nous intéressons à un modèle architectural, appelé architecture isométrique de systèmes multiprocesseurs sur puce, qui permet d'évaluer, de prédire et d'optimiser les systèmes OCM en misant sur une organisation efficace des nœuds (processeurs et mémoires), et à des méthodologies qui permettent d'utiliser efficacement ces architectures. Dans la première partie de la thèse, nous nous intéressons à la topologie du modèle et nous proposons une architecture qui permet d'utiliser efficacement et massivement les mémoires sur la puce. Les processeurs et les mémoires sont organisés selon une approche isométrique qui consiste à rapprocher les données des processus plutôt que d'optimiser les transferts entre les processeurs et les mémoires disposés de manière conventionnelle. L'architecture est un modèle maillé en trois dimensions. La disposition des unités sur ce modèle est inspirée de la structure cristalline du chlorure de sodium (NaCl), où chaque processeur peut accéder à six mémoires à la fois et où chaque mémoire peut communiquer avec autant de processeurs à la fois. Dans la deuxième partie de notre travail, nous nous intéressons à une méthodologie de décomposition où le nombre de nœuds du modèle est idéal et peut être déterminé à partir d'une spécification matricielle de l'application qui est traitée par le modèle proposé. Sachant que la performance d'un modèle dépend de la quantité de flot de données échangées entre ses unités, en l'occurrence leur nombre, et notre but étant de garantir une bonne performance de calcul en fonction de l'application traitée, nous proposons de trouver le nombre idéal de processeurs et de mémoires du système à construire. Aussi, considérons-nous la décomposition de la spécification du modèle à construire ou de l'application à traiter en fonction de l'équilibre de charge des unités. Nous proposons ainsi une approche de décomposition sur trois points : la transformation de la spécification ou de l'application en une matrice d'incidence dont les éléments sont les flots de données entre les processus et les données, une nouvelle méthodologie basée sur le problème de la formation des cellules (Cell Formation Problem [CFP]), et un équilibre de charge de processus dans les processeurs et de données dans les mémoires. Dans la troisième partie, toujours dans le souci de concevoir un système efficace et performant, nous nous intéressons à l'affectation des processeurs et des mémoires par une méthodologie en deux étapes. Dans un premier temps, nous affectons des unités aux nœuds du système, considéré ici comme un graphe non orienté, et dans un deuxième temps, nous affectons des valeurs aux arcs de ce graphe. Pour l'affectation, nous proposons une modélisation des applications décomposées en utilisant une approche matricielle et l'utilisation du problème d'affectation quadratique (Quadratic Assignment Problem [QAP]). Pour l'affectation de valeurs aux arcs, nous proposons une approche de perturbation graduelle, afin de chercher la meilleure combinaison du coût de l'affectation, ceci en respectant certains paramètres comme la température, la dissipation de chaleur, la consommation d'énergie et la surface occupée par la puce. Le but ultime de ce travail est de proposer aux architectes de systèmes multiprocesseurs sur puce une méthodologie non traditionnelle et un outil systématique et efficace d'aide à la conception dès la phase de la spécification fonctionnelle du système.