37 resultados para Cortex préfontal

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Affiliation: Département de Psychologie, Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La période postnatale et l’expérience sensorielle sont critiques pour le développement du système visuel. Les interneurones inhibiteurs exprimant l’acide γ-aminobutyrique (GABA) jouent un rôle important dans le contrôle de l’activité neuronale, le raffinement et le traitement de l’information sensorielle qui parvient au cortex cérébral. Durant le développement, lorsque le cortex cérébral est très susceptible aux influences extrinsèques, le GABA agit dans la formation des périodes critiques de sensibilité ainsi que dans la plasticité dépendante de l’expérience. Ainsi, ce système inhibiteur servirait à ajuster le fonctionnement des aires sensorielles primaires selon les conditions spécifiques d’activité en provenance du milieu, des afférences corticales (thalamiques et autres) et de l’expérience sensorielle. Certaines études montrent que des différences dans la densité et la distribution de ces neurones inhibiteurs corticaux reflètent les caractéristiques fonctionnelles distinctes entre les différentes aires corticales. La Parvalbumine (PV), la Calretinine (CR) et la Calbindine (CB) sont des protéines chélatrices du calcium (calcium binding proteins ou CaBPs) localisées dans différentes sous-populations d’interneurones GABAergiques corticaux. Ces protéines tamponnent le calcium intracellulaire de sorte qu’elles peuvent moduler différemment plusieurs fonctions neuronales, notamment l’aspect temporel des potentiels d’action, la transmission synaptique et la potentialisation à long terme. Plusieurs études récentes montrent que les interneurones immunoréactifs (ir) aux CaBPs sont également très sensibles à l’expérience et à l’activité sensorielle durant le développement et chez l’adulte. Ainsi, ces neurones pourraient avoir un rôle crucial à jouer dans le phénomène de compensation ou de plasticité intermodale entre les cortex sensoriels primaires. Chez le hamster (Mesocricetus auratus), l’énucléation à la naissance fait en sorte que le cortex visuel primaire peut être recruté par les autres modalités sensorielles, telles que le toucher et l’audition. Suite à cette privation oculaire, il y a établissement de projections ectopiques permanentes entre les collicules inférieurs (CI) et le corps genouillé latéral (CGL). Ceci a pour effet d’acheminer l’information auditive vers le cortex visuel primaire (V1) durant le développement postnatal. À l’aide de ce modèle, l’objectif général de ce projet de thèse est d’étudier l’influence et le rôle de l’activité sensorielle sur la distribution et l’organisation des interneurones corticaux immunoréactifs aux CaBPs dans les aires sensorielles visuelle et auditive primaires du hamster adulte. Les changements dans l’expression des CaBPs ont été déterminés d’une manière quantitative en évaluant les profils de distribution laminaire de ces neurones révélés par immunohistochimie. Dans une première expérience, nous avons étudié la distribution laminaire des CaBPs dans les aires visuelle (V1) et auditive (A1) primaires chez le hamster normal adulte. Les neurones immunoréactifs à la PV et la CB, mais non à la CR, sont distribués différemment dans ces deux cortex primaires dédiés à une modalité sensorielle différente. Dans une deuxième étude, une comparaison a été effectuée entre des animaux contrôles et des hamsters énucléés à la naissance. Cette étude montre que le cortex visuel primaire de ces animaux adopte une chimioarchitecture en PV similaire à celle du cortex auditif. Nos recherches montrent donc qu’une suppression de l’activité visuelle à la naissance peut influencer l’expression des CaBPs dans l’aire V1 du hamster adulte. Ceci suggère également que le type d’activité des afférences en provenance d’autres modalités sensorielles peut moduler, en partie, une circuiterie corticale en CaBPs qui lui est propre dans le cortex hôte ou recruté. Ainsi, nos travaux appuient l’hypothèse selon laquelle il serait possible que certaines de ces sous-populations d’interneurones GABAergiques jouent un rôle crucial dans le phénomène de la plasticité intermodale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tout au long de la vie, le cerveau développe des représentations de son environnement permettant à l’individu d’en tirer meilleur profit. Comment ces représentations se développent-elles pendant la quête de récompenses demeure un mystère. Il est raisonnable de penser que le cortex est le siège de ces représentations et que les ganglions de la base jouent un rôle important dans la maximisation des récompenses. En particulier, les neurones dopaminergiques semblent coder un signal d’erreur de prédiction de récompense. Cette thèse étudie le problème en construisant, à l’aide de l’apprentissage machine, un modèle informatique intégrant de nombreuses évidences neurologiques. Après une introduction au cadre mathématique et à quelques algorithmes de l’apprentissage machine, un survol de l’apprentissage en psychologie et en neuroscience et une revue des modèles de l’apprentissage dans les ganglions de la base, la thèse comporte trois articles. Le premier montre qu’il est possible d’apprendre à maximiser ses récompenses tout en développant de meilleures représentations des entrées. Le second article porte sur l'important problème toujours non résolu de la représentation du temps. Il démontre qu’une représentation du temps peut être acquise automatiquement dans un réseau de neurones artificiels faisant office de mémoire de travail. La représentation développée par le modèle ressemble beaucoup à l’activité de neurones corticaux dans des tâches similaires. De plus, le modèle montre que l’utilisation du signal d’erreur de récompense peut accélérer la construction de ces représentations temporelles. Finalement, il montre qu’une telle représentation acquise automatiquement dans le cortex peut fournir l’information nécessaire aux ganglions de la base pour expliquer le signal dopaminergique. Enfin, le troisième article évalue le pouvoir explicatif et prédictif du modèle sur différentes situations comme la présence ou l’absence d’un stimulus (conditionnement classique ou de trace) pendant l’attente de la récompense. En plus de faire des prédictions très intéressantes en lien avec la littérature sur les intervalles de temps, l’article révèle certaines lacunes du modèle qui devront être améliorées. Bref, cette thèse étend les modèles actuels de l’apprentissage des ganglions de la base et du système dopaminergique au développement concurrent de représentations temporelles dans le cortex et aux interactions de ces deux structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La vision fournit des informations essentielles sur la surface de marche, ainsi que sur la taille, la forme et la position d’obstacles potentiels dans notre environnement. Dans le cas d’un prédateur, la vision fournit également des informations sur la vitesse d’une proie potentielle. Les mécanismes neuronaux impliqués dans l’exécution des modifications de la marche sous guidage visuel sont relativement bien connus, mais ceux impliqués dans la planification de ces modifications de la marche sont peu étudiés. Le cortex pariétal postérieur (CPP) semble être un candidat approprié si l’on considère les propriétés du CPP lors des mouvements d’atteinte vers une cible. Le but des présents travaux est de déterminer la contribution du CPP au contrôle de la locomotion sous guidage visuel. La première étude présentée dans cette thèse a pour hypothèse que le CPP du chat est impliqué dans la planification du placement précis du pied lors des modifications volontaires de la marche. Nous avons entraîné les animaux à enjamber des obstacles en mouvement attachés à la ceinture d’un tapis roulant. Afin d’augmenter la nécessité d’intégrer les informations visuelles et proprioceptives, nous avons dissocié la vitesse des obstacles de celle du tapis roulant. Nous avons observé que plus la vision devient critique pour la tâche, plus les déficits sont importants. Notre analyse démontre que ceux-ci résultent d’un placement inapproprié du pied dans le cycle de marche précédant l’enjambement de l’obstacle. Ceci suggère que le CPP est impliqué dans la planification du placement précis du pied pendant la locomotion sous guidage visuel. La vision directe est disponible lors de la modification de l’activité des membres antérieurs, mais n’est plus disponible lorsque l’obstacle passe sous le corps. Par conséquent, la modification de l’activité des membres postérieurs doit être basée sur l’information gardée en mémoire et coordonnée avec celle des membres antérieurs. Notre deuxième étude a pour but de caractériser les mécanismes neuronaux responsables de cette coordination. Nous avons proposé que le CPP soit impliqué dans la coordination des membres antérieurs et postérieurs lors de l’enjambement d’obstacles. Pour tester cette hypothèse, nous avons enregistré l’activité de neurones de l’aire 5 pendant la même tâche. Nous avons découvert deux populations: une qui décharge lors du passage de l’obstacle entre les membres antérieurs et postérieurs et une autre qui décharge lors du passage de l’obstacle par les membres postérieurs. Dans la tâche de dissociation visuelle, la décharge est modifiée en fonction du temps de passage de l’obstacle sous le corps et reflète la modification du couplage entre les membres lors du changement dans la stratégie d’enjambement. De plus, ces mêmes neurones maintiennent une décharge soutenue lorsqu’un obstacle fixe se trouve entre les membres antérieurs et postérieurs ou les deux membres postérieurs (limite testée : 1-2min). Ces neurones pourraient être responsables de l’emmagasinage à plus long terme des caractéristiques d’un obstacle pour le guidage des mouvements des membres postérieurs. Nos résultats suggèrent que le CPP est impliqué dans l’intégration des informations visuelles et proprioceptives pour la planification du placement précis du pied devant un obstacle. Le patron de décharge de nos populations neuronales suggère qu’il encode également l’information temporelle et spatiale concernant la vitesse et la position de l’obstacle afin de coordonner l’activité des quatre membres pendant la tâche. Finalement, nous proposons qu’une des fonctions du CPP soit d’estimer la position des membres par rapport à l’obstacle en mouvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les tumeurs du cortex surrénalien sont variées et fréquentes dans la population. Bien que des mutations aient été identifiées dans certains syndromes familiaux, les causes génétiques menant à la formation de tumeur du cortex surrénalien ne sont encore que peu connues. Un sous-type de ces tumeurs incluent les hyperplasies macronodulaires et sont pressenties comme la voie d’entrée de la tumorigenèse du cortex surrénalien. L’événement génétique le plus fréquemment observé dans ces tumeurs est l’expression aberrante d’un ou plusieurs récepteurs couplés aux protéines G qui contrôle la production de stéroïdes ainsi que la prolifération cellulaire. L’événement génétique menant à l’expression aberrante de ces récepteurs est encore inconnu. En utilisant le récepteur au peptide insulinotropique dépendant du glucose (GIP) comme modèle, cette étude se propose d’identifier les mécanismes moléculaires impliqués dans l’expression aberrante du récepteur au GIP (GIPR) dans les tumeurs du cortex surrénalien. Une partie clinique de cette étude se penchera sur l’identification de nouveaux cas de tumeurs surrénaliennes exprimant le GIPR de façon aberrante. Les patients étudiés seront soumis à un protocole d’investigation in vivo complet et les tumeurs prélevées seront étudiées extensivement in vitro par RT-PCR en temps réel, culture primaire des tumeurs, immunohistochimie et biopuces. Le lien entre le GIP et la physiologie normal sera également étudiée de cette façon. Une autre partie de l’étude utilisera les nouvelles techniques d’investigation à grande échelle en identifiant le transcriptome de différents cas de tumeurs exprimant le GIPR de façon aberrante. L’importance fonctionnelle des gènes identifiée par ces techniques sera confirmée dans des modèles cellulaires. Cette étude présente pour la première des cas de tumeurs productrices d’aldostérone présentant des réponses aberrantes, auparavant confinées aux tumeurs productrice de cortisol ou d’androgènes surrénaliens. Le cas probant présenté avait une production d’aldostérone sensible au GIP, le GIPR était surexprimé au niveau de l’ARNm et un fort marquage a été identifié dans la tumeur spécifiquement. Dans les surrénales normales, cette étude démontre que le GIP est impliqué dans le contrôle de la production d’aldostérone. Ces résultats ont été confirmés in vitro. Finalement, le profilage à grande échelle des niveaux d’expression de tous les gènes du génome a permis d’isoler une liste de gènes spécifiquement liés à la présence du GIPR dans des hyperplasies du cortex surrénalien. Cette liste inclus la périlipine, une protéine de stockage des lipides dans les adipocytes et la glande surrénale, dont l’expression est fortement réprimée dans les cas GIP-dépendant. Des études dans un modèle cellulaire démontrent que la répression de ce gène par siRNA est suffisante pour induire l’expression du récepteur au GIP et que cette protéine est impliquée dans la stimulation de la stéroïdogénèse par le GIP. En alliant des méthodes d’investigation in vivo de pointe à des techniques in vitro avancée, cette étude offre de nouveaux regards sur les liens entre le GIP et la physiologie de la glande surrénale, que ce soit dans des conditions normales ou pathologiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'application de classifieurs linéaires à l'analyse des données d'imagerie cérébrale (fMRI) a mené à plusieurs percées intéressantes au cours des dernières années. Ces classifieurs combinent linéairement les réponses des voxels pour détecter et catégoriser différents états du cerveau. Ils sont plus agnostics que les méthodes d'analyses conventionnelles qui traitent systématiquement les patterns faibles et distribués comme du bruit. Dans le présent projet, nous utilisons ces classifieurs pour valider une hypothèse portant sur l'encodage des sons dans le cerveau humain. Plus précisément, nous cherchons à localiser des neurones, dans le cortex auditif primaire, qui détecteraient les modulations spectrales et temporelles présentes dans les sons. Nous utilisons les enregistrements fMRI de sujets soumis à 49 modulations spectro-temporelles différentes. L'analyse fMRI au moyen de classifieurs linéaires n'est pas standard, jusqu'à maintenant, dans ce domaine. De plus, à long terme, nous avons aussi pour objectif le développement de nouveaux algorithmes d'apprentissage automatique spécialisés pour les données fMRI. Pour ces raisons, une bonne partie des expériences vise surtout à étudier le comportement des classifieurs. Nous nous intéressons principalement à 3 classifieurs linéaires standards, soient l'algorithme machine à vecteurs de support (linéaire), l'algorithme régression logistique (régularisée) et le modèle bayésien gaussien naïf (variances partagées).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le regroupement des neurones de propriétés similaires est à l’origine de modules permettant d’optimiser l’analyse de l’information. La conséquence est la présence de cartes fonctionnelles dans le cortex visuel primaire de certains mammifères pour de nombreux paramètres tels que l’orientation, la direction du mouvement ou la position des stimuli (visuotopie). Le premier volet de cette thèse est consacré à caractériser l’organisation modulaire dans le cortex visuel primaire pour un paramètre fondamental, la suppression centre / pourtour et au delà du cortex visuel primaire (dans l’aire 21a), pour l’orientation et la direction. Toutes les études ont été effectuées à l’aide de l’imagerie optique des signaux intrinsèques sur le cortex visuel du chat anesthésié. La quantification de la modulation par la taille des stimuli à permis de révéler la présence de modules de forte et de faible suppression par le pourtour dans le cortex visuel primaire (aires 17 et 18). Ce type d’organisation n’avait été observé jusqu’ici que dans une aire de plus haut niveau hiérarchique chez le primate. Une organisation modulaire pour l’orientation, similaire à celle observée dans le cortex visuel primaire a été révélée dans l’aire 21a. Par contre, contrairement à l’aire 18, l’aire 21a ne semblait pas être organisée en domaine de direction. L’ensemble de ces résultats pourront permettre d’alimenter les connaissances sur l’organisation anatomo-fonctionnelle du cortex visuel du chat mais également de mieux comprendre les facteurs qui déterminent la présence d’une organisation modulaire. Le deuxième volet abordé dans cette thèse s’est intéressé à l’amélioration de l’aspect quantitatif apporté par l’analyse temporelle en imagerie optique des signaux intrinsèques. Cette nouvelle approche, basée sur l’analyse de Fourier a permis d’augmenter considérablement le rapport signal / bruit des enregistrements. Toutefois, cette analyse ne s’est basée jusqu’ici que sur la quantification d’une seule harmonique ce qui a limité son emploi à la cartographie de l’orientation et de rétinotopie uniquement. En exploitant les plus hautes harmoniques, un modèle a été proposé afin d’estimer la taille des champs récepteurs et la sélectivité à la direction. Ce modèle a par la suite été validé par des approches conventionnelles dans le cortex visuel primaire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En raison de l’utilisation d’un mode de communication totalement différent de celui des entendants, le langage des signes, et de l’absence quasi-totale d’afférences en provenance du système auditif, il y a de fortes chances que d’importantes modifications fonctionnelles et structurales s’effectuent dans le cerveau des individus sourds profonds. Les études antérieures suggèrent que cette réorganisation risque d’avoir des répercussions plus importantes sur les structures corticales situées le long de la voie visuelle dorsale qu’à l’intérieur de celles situées à l’intérieur de la voie ventrale. L’hypothèse proposée par Ungerleider et Mishkin (1982) quant à la présence de deux voies visuelles dans les régions occipitales, même si elle demeure largement acceptée dans la communauté scientifique, s’en trouve aussi relativement contestée. Une voie se projetant du cortex strié vers les régions pariétales postérieures, est impliquée dans la vision spatiale, et l’autre se projetant vers les régions du cortex temporal inférieur, est responsable de la reconnaissance de la forme. Goodale et Milner (1992) ont par la suite proposé que la voie dorsale, en plus de son implication dans le traitement de l’information visuo-spatiale, joue un rôle dans les ajustements sensori-moteurs nécessaires afin de guider les actions. Dans ce contexte, il est tout à fait plausible de considérer qu’un groupe de personne utilisant un langage sensori-moteur comme le langage des signes dans la vie de tous les jours, s’expose à une réorganisation cérébrale ciblant effectivement la voie dorsale. L’objectif de la première étude est d’explorer ces deux voies visuelles et plus particulièrement, la voie dorsale, chez des individus entendants par l’utilisation de deux stimuli de mouvement dont les caractéristiques physiques sont très similaires, mais qui évoquent un traitement relativement différent dans les régions corticales visuelles. Pour ce faire, un stimulus de forme définie par le mouvement et un stimulus de mouvement global ont été utilisés. Nos résultats indiquent que les voies dorsale et ventrale procèdent au traitement d’une forme définie par le mouvement, tandis que seule la voie dorsale est activée lors d’une tâche de mouvement global dont les caractéristiques psychophysiques sont relativement semblables. Nous avons utilisé, subséquemment, ces mêmes stimulations activant les voies dorsales et ventrales afin de vérifier quels pourraient être les différences fonctionnelles dans les régions visuelles et auditives chez des individus sourds profonds. Plusieurs études présentent la réorganisation corticale dans les régions visuelles et auditives en réponse à l’absence d’une modalité sensorielle. Cependant, l’implication spécifique des voies visuelles dorsale et ventrale demeure peu étudiée à ce jour, malgré plusieurs résultats proposant une implication plus importante de la voie dorsale dans la réorganisation visuelle chez les sourds. Suite à l’utilisation de l’imagerie cérébrale fonctionnelle pour investiguer ces questions, nos résultats ont été à l’encontre de cette hypothèse suggérant une réorganisation ciblant particulièrement la voie dorsale. Nos résultats indiquent plutôt une réorganisation non-spécifique au type de stimulation utilisé. En effet, le gyrus temporal supérieur est activé chez les sourds suite à la présentation de toutes nos stimulations visuelles, peu importe leur degré de complexité. Le groupe de participants sourds montre aussi une activation du cortex associatif postérieur, possiblement recruté pour traiter l’information visuelle en raison de l’absence de compétition en provenance des régions temporales auditives. Ces résultats ajoutent aux données déjà recueillies sur les modifications fonctionnelles qui peuvent survenir dans tout le cerveau des personnes sourdes, cependant les corrélats anatomiques de la surdité demeurent méconnus chez cette population. Une troisième étude se propose donc d’examiner les modifications structurales pouvant survenir dans le cerveau des personnes sourdes profondes congénitales ou prélinguales. Nos résultats montrent que plusieurs régions cérébrales semblent être différentes entre le groupe de participants sourds et celui des entendants. Nos analyses ont montré des augmentations de volume, allant jusqu’à 20%, dans les lobes frontaux, incluant l’aire de Broca et d’autres régions adjacentes impliqués dans le contrôle moteur et la production du langage. Les lobes temporaux semblent aussi présenter des différences morphométriques même si ces dernières ne sont pas significatives. Enfin, des différences de volume sont également recensées dans les parties du corps calleux contenant les axones permettant la communication entre les régions temporales et occipitales des deux hémisphères.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les systèmes sensoriels encodent l’information sur notre environnement sous la forme d’impulsions électriques qui se propagent dans des réseaux de neurones. Élucider le code neuronal – les principes par lesquels l’information est représentée dans l’activité des neurones – est une question fondamentale des neurosciences. Cette thèse constituée de 3 études (E) s’intéresse à deux types de codes, la synchronisation et l’adaptation, dans les neurones du cortex visuel primaire (V1) du chat. Au niveau de V1, les neurones sont sélectifs pour des propriétés comme l’orientation des contours, la direction et la vitesse du mouvement. Chaque neurone ayant une combinaison de propriétés pour laquelle sa réponse est maximale, l’information se retrouve distribuée dans différents neurones situés dans diverses colonnes et aires corticales. Un mécanisme potentiel pour relier l’activité de neurones répondant à des items eux-mêmes reliés (e.g. deux contours appartenant au même objet) est la synchronisation de leur activité. Cependant, le type de relations potentiellement encodées par la synchronisation n’est pas entièrement clair (E1). Une autre stratégie de codage consiste en des changements transitoires des propriétés de réponse des neurones en fonction de l’environnement (adaptation). Cette plasticité est présente chez le chat adulte, les neurones de V1 changeant d’orientation préférée après exposition à une orientation non préférée. Cependant, on ignore si des neurones spatialement proches exhibent une plasticité comparable (E2). Finalement, nous avons étudié la dynamique de la relation entre synchronisation et plasticité des propriétés de réponse (E3). Résultats principaux — (E1) Nous avons montré que deux stimuli en mouvement soit convergent soit divergent élicitent plus de synchronisation entre les neurones de V1 que deux stimuli avec la même direction. La fréquence de décharge n’était en revanche pas différente en fonction du type de stimulus. Dans ce cas, la synchronisation semble coder pour la relation de cocircularité dont le mouvement convergent (centripète) et divergent (centrifuge) sont deux cas particuliers, et ainsi pourrait jouer un rôle dans l’intégration des contours. Cela indique que la synchronisation code pour une information qui n’est pas présente dans la fréquence de décharge des neurones. (E2) Après exposition à une orientation non préférée, les neurones changent d’orientation préférée dans la même direction que leurs voisins dans 75% des cas. Plusieurs propriétés de réponse des neurones de V1 dépendent de leur localisation dans la carte fonctionnelle corticale pour l’orientation. Les comportements plus diversifiés des 25% de neurones restants sont le fait de différences fonctionnelles que nous avons observé et qui suggèrent une localisation corticale particulière, les singularités, tandis que la majorité des neurones semblent situés dans les domaines d’iso-orientation. (E3) Après adaptation, les paires de neurones dont les propriétés de réponse deviennent plus similaires montrent une synchronisation accrue. Après récupération, la synchronisation retourne à son niveau initial. Par conséquent, la synchronisation semble refléter de façon dynamique la similarité des propriétés de réponse des neurones. Conclusions — Cette thèse contribue à notre connaissance des capacités d’adaptation de notre système visuel à un environnement changeant. Nous proposons également des données originales liées au rôle potentiel de la synchronisation. En particulier, la synchronisation semble capable de coder des relations entre objets similaires ou dissimilaires, suggérant l’existence d’assemblées neuronales superposées.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les neurones du cortex visuel primaire (aire 17) du chat adulte répondent de manière sélective à différentes propriétés d’une image comme l’orientation, le contraste ou la fréquence spatiale. Cette sélectivité se manifeste par une réponse sous forme de potentiels d’action dans les neurones visuels lors de la présentation d’une barre lumineuse de forme allongée dans les champs récepteurs de ces neurones. La fréquence spatiale (FS) se mesure en cycles par degré (cyc./deg.) et se définit par la quantité de barres lumineuses claires et sombres présentées à une distance précise des yeux. Par ailleurs, jusqu’à récemment, l’organisation corticale chez l’adulte était considérée immuable suite à la période critique post-natale. Or, lors de l'imposition d'un stimulus non préféré, nous avons observé un phénomène d'entrainement sous forme d'un déplacement de la courbe de sélectivité à la suite de l'imposition d'une FS non-préférée différente de la fréquence spatiale optimale du neurone. Une deuxième adaptation à la même FS non-préférée induit une réponse neuronale différente par rapport à la première imposition. Ce phénomène de "gain cortical" avait déjà été observé dans le cortex visuel primaire pour ce qui est de la sélectivité à l'orientation des barres lumineuses, mais non pour la fréquence spatiale. Une telle plasticité à court terme pourrait être le corrélat neuronal d'une modulation de la pondération relative du poids des afférences synaptiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les lésions tumorales cortico-surrénaliennes sont majoritairement des adénomes bénins et très rarement des carcinomes. Les altérations génétiques impliquées dans le développement des tumeurs cortico-surrénaliennes sporadiques, plus particulièrement au stade malin, demeurent à ce jour très peu connues. Lors de travaux récents menant à l’identification d’altérations génétiques de β-CATÉNINE nous avons constaté que plusieurs tumeurs présentaient une accumulation nucléo/cytoplasmique de la protéine β-CATÉNINE sans toutefois contenir de mutations pour ce gène. Nous avons donc émis l’hypothèse que, comme pour d’autres types de cancers, d’autres composants de la voie de signalisation Wnt/β-CATÉNINE, tel qu’AXIN2, pourrait être impliqués dans le développement des tumeurs du cortex surrénalien. De plus, plusieurs aberrations dans l’expression d’AXIN2 et de β-CATÉNINE sont associées à des tumeurs présentant de l’instabilité microsatellite dans d’autres types de cancer, notamment le cancer gastrique et colorectal. Nous avons donc étudié une cohorte de 30 adénomes, 6 carcinomes, 5 AIMAH, 3 hyperplasies ACTH-dépendante et 5 PPNAD ainsi que les lignées cellulaires de carcinomes cortico-surrénaliens humains H295R et SW13. Une étude préliminaire du statut MSI a également été réalisée sur 10 tumeurs contenant une mutation pour AXIN2 et/ou β-CATÉNINE. Nous avons trouvé des mutations d’AXIN2 dans 7% des adénomes (2/30) et 17% des carcinomes (1/6) cortico-surrénaliens. L’analyse fonctionnelle des mutations par immunohistochimie, analyse western blot et analyse de RT-PCR en temps réel a révélé une diminution de l’expression d’AXIN2 associée à cette mutation. L’analyse préliminaire MSI a démontré 1 échantillon AIMAH MSI-H, c’est-à-dire instable pour le locus BAT-25 et BAT-26 et 3 autres adénomes sécrétant de l’aldostérone instables seulement pour le locus BAT-26. Ainsi, ces travaux permirent d’identifier une nouvelle altération génétique associée au développement des tumeurs du cortex surrénalien en plus de rapporter pour la première fois la présence de MSI-H dans ce type de tumeurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La progression d’un individu au travers d’un environnement diversifié dépend des informations visuelles qui lui permettent d’évaluer la taille, la forme ou même la distance et le temps de contact avec les obstacles dans son chemin. Il peut ainsi planifier en avance les modifications nécessaires de son patron locomoteur afin d’éviter ou enjamber ces entraves. Ce concept est aussi applicable lorsque le sujet doit atteindre une cible, comme un prédateur tentant d’attraper sa proie en pleine course. Les structures neurales impliquées dans la genèse des modifications volontaires de mouvements locomoteurs ont été largement étudiées, mais relativement peu d’information est présentement disponible sur les processus intégrant l’information visuelle afin de planifier ces mouvements. De nombreux travaux chez le primate suggèrent que le cortex pariétal postérieur (CPP) semble jouer un rôle important dans la préparation et l’exécution de mouvements d’atteinte visuellement guidés. Dans cette thèse, nous avons investigué la proposition que le CPP participe similairement dans la planification et le contrôle de la locomotion sous guidage visuel chez le chat. Dans notre première étude, nous avons examiné l’étendue des connexions cortico-corticales entre le CPP et les aires motrices plus frontales, particulièrement le cortex moteur, à l’aide d’injections de traceurs fluorescents rétrogrades. Nous avons cartographié la surface du cortex moteur de chats anesthésiés afin d’identifier les représentations somatotopiques distales et proximales du membre antérieur dans la partie rostrale du cortex moteur, la représentation du membre antérieur située dans la partie caudale de l’aire motrice, et enfin la représentation du membre postérieur. L’injection de différents traceurs rétrogrades dans deux régions motrices sélectionnées par chat nous a permis de visualiser la densité des projections divergentes et convergentes pariétales, dirigées vers ces sites moteurs. Notre analyse a révélé une organisation topographique distincte de connexions du CPP avec toutes les régions motrices identifiées. En particulier, nous avons noté que la représentation caudale du membre antérieur reçoit majoritairement des projections du côté rostral du sillon pariétal, tandis que la partie caudale du CPP projette fortement vers la représentation rostrale du membre antérieur. Cette dernière observation est particulièrement intéressante, parce que le côté caudal du sillon pariétal reçoit de nombreux inputs visuels et sa cible principale, la région motrice rostrale, est bien connue pour être impliquée dans les fonctions motrices volontaires. Ainsi, cette étude anatomique suggère que le CPP, au travers de connexions étendues avec les différentes régions somatotopiques du cortex moteur, pourrait participer à l’élaboration d’un substrat neural idéal pour des processus tels que la coordination inter-membre, intra-membre et aussi la modulation de mouvements volontaires sous guidage visuel. Notre deuxième étude a testé l’hypothèse que le CPP participe dans la modulation et la planification de la locomotion visuellement guidée chez le chat. En nous référant à la cartographie corticale obtenue dans nos travaux anatomiques, nous avons enregistré l’activité de neurones pariétaux, situés dans les portions des aires 5a et 5b qui ont de fortes connexions avec les régions motrices impliquées dans les mouvements de la patte antérieure. Ces enregistrements ont été effectués pendant une tâche de locomotion qui requiert l’enjambement d’obstacles de différentes tailles. En dissociant la vitesse des obstacles de celle du tapis sur lequel le chat marche, notre protocole expérimental nous a aussi permit de mettre plus d’emphase sur l’importance de l’information visuelle et de la séparer de l’influx proprioceptif généré pendant la locomotion. Nos enregistrements ont révélé deux groupes de cellules pariétales activées en relation avec l’enjambement de l’obstacle: une population, principalement située dans l’aire 5a, qui décharge seulement pendant le passage du membre au dessus del’entrave (cellules spécifiques au mouvement) et une autre, surtout localisée dans l’aire 5b, qui est activée au moins un cycle de marche avant l’enjambement (cellules anticipatrices). De plus, nous avons observé que l’activité de ces groupes neuronaux, particulièrement les cellules anticipatrices, était amplifiée lorsque la vitesse des obstacles était dissociée de celle du tapis roulant, démontrant l’importance grandissante de la vision lorsque la tâche devient plus difficile. Enfin, un grand nombre des cellules activées spécifiquement pendant l’enjambement démontraient une corrélation soutenue de leur activité avec le membre controlatéral, même s’il ne menait pas dans le mouvement (cellules unilatérales). Inversement, nous avons noté que la majorité des cellules anticipatrices avaient plutôt tendance à maintenir leur décharge en phase avec l’activité musculaire du premier membre à enjamber l’obstacle, indépendamment de sa position par rapport au site d’enregistrement (cellules bilatérales). Nous suggérons que cette disparité additionnelle démontre une fonction diversifiée de l’activité du CPP. Par exemple, les cellules unilatérales pourraient moduler le mouvement du membre controlatéral au-dessus de l’obstacle, qu’il mène ou suive dans l’ordre d’enjambement, tandis que les neurones bilatéraux sembleraient plutôt spécifier le type de mouvement volontaire requis pour éviter l’entrave. Ensembles, nos observations indiquent que le CPP a le potentiel de moduler l’activité des centres moteurs au travers de réseaux corticaux étendus et contribue à différents aspects de la locomotion sous guidage visuel, notamment l’initiation et l’ajustement de mouvements volontaires des membres antérieurs, mais aussi la planification de ces actions afin d’adapter la progression de l’individu au travers d’un environnement complexe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les systèmes cholinergique et dopaminergique jouent un rôle prépondérant dans les fonctions cognitives. Ce rôle est exercé principalement grâce à leur action modulatrice de l’activité des neurones pyramidaux du cortex préfrontal. L’interaction pharmacologique entre ces systèmes est bien documentée mais les études de leurs interactions neuroanatomiques sont rares, étant donné qu’ils sont impliqués dans une transmission diffuse plutôt que synaptique. Ce travail de thèse visait à développer une expertise pour analyser ce type de transmission diffuse en microscopie confocale. Nous avons étudié les relations de microproximité entre ces différents systèmes dans le cortex préfrontal médian (mPFC) de rats et souris. En particulier, la densité des varicosités axonales en passant a été quantifiée dans les segments des fibres cholinergiques et dopaminergiques à une distance mutuelle de moins de 3 µm ou à moins de 3 µm des somas de cellules pyramidales. Cette microproximité était considérée comme une zone d’interaction probable entre les éléments neuronaux. La quantification était effectuée après triple-marquage par immunofluorescence et acquisition des images de 1 µm par microscopie confocale. Afin d’étudier la plasticité de ces relations de microproximité, cette analyse a été effectuée dans des conditions témoins, après une activation du mPFC et dans un modèle de schizophrénie par déplétion des neurones cholinergiques du noyau accumbens. Les résultats démontrent que 1. Les fibres cholinergiques interagissent avec des fibres dopaminergiques et ce sur les mêmes neurones pyramidaux de la couche V du mPFC. Ce résultat suggère différents apports des systèmes cholinergique et dopaminergique dans l’intégration effectuée par une même cellule pyramidale. 2. La densité des varicosités en passant cholinergiques et dopaminergiques sur des segments de fibre en microproximité réciproque est plus élevée comparé aux segments plus distants les uns des autres. Ce résultat suggère un enrichissement du nombre de varicosités axonales dans les zones d’interaction. 3. La densité des varicosités en passant sur des segments de fibre cholinergique en microproximité de cellules pyramidales, immunoúactives pour c-Fos après une stimulation visuelle et une stimulation électrique des noyaux cholinergiques projetant au mPFC est plus élevée que la densité des varicosités de segments en microproximité de cellules pyramidales non-activées. Ce résultat suggère un enrichissement des varicosités axonales dépendant de l’activité neuronale locale au niveau de la zone d'interaction avec d'autres éléments neuronaux. 4. La densité des varicosités en passant des fibres dopaminergiques a été significativement diminuée dans le mPFC de rats ayant subi une déplétion cholinergique dans le noyau accumbens, comparée aux témoins. Ces résultats supportent des interrelations entre la plasticité structurelle des varicosités dopaminergiques et le fonctionnement cortical. L’ensemble des donneès démontre une plasticité de la densité locale des varicosités axonales en fonction de l’activité neuronale locale. Cet enrichissement activité-dépendant contribue vraisemblablement au maintien d’une interaction neurochimique entre deux éléments neuronaux.