13 resultados para Conditional Dependence

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the 1976-1992 period. We also test a conditional APT model by using the difference between the 30-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. The conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from a total of 25 securities exchanged on the Brazilian markets. The inclusion of this second factor proves to be crucial for the appropriate pricing of the portfolios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the 1976-1992 period. We also test a conditional APT model by using the difference between the 30-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. the conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from a total of 25 securities exchanged on the Brazilian markets. the inclusion of this second factor proves to be crucial for the appropriate pricing of the portfolios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity. We establish the asymptotic validity of three easy-to-implement alternative bootstrap proposals for stationary autoregressive processes with m.d.s. errors subject to possible conditional heteroskedasticity of unknown form. These proposals are the fixed-design wild bootstrap, the recursive-design wild bootstrap and the pairwise bootstrap. In a simulation study all three procedures tend to be more accurate in small samples than the conventional large-sample approximation based on robust standard errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many empirical applications the proposed robust bootstrap procedures should routinely replace conventional bootstrap procedures for autoregressions based on the i.i.d. error assumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The attached file is created with Scientific Workplace Latex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let 'epsilon' be a class of event. Conditionally Expected Utility decision makers are decision makers whose conditional preferences ≿E, E є 'epsilon', satisfy the axioms of Subjective Expected Utility theory (SEU). We extend the notion of unconditional preference that is conditionally EU to unconditional preferences that are not necessarily SEU. We give a representation theorem for a class of such preferences, and show that they are Invariant Bi-separable in the sense of Ghirardato et al.[7]. Then, we consider the special case where the unconditional preference is itself SEU, and compare our results with those of Fishburn [6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nous développons dans cette thèse, des méthodes de bootstrap pour les données financières de hautes fréquences. Les deux premiers essais focalisent sur les méthodes de bootstrap appliquées à l’approche de "pré-moyennement" et robustes à la présence d’erreurs de microstructure. Le "pré-moyennement" permet de réduire l’influence de l’effet de microstructure avant d’appliquer la volatilité réalisée. En se basant sur cette ap- proche d’estimation de la volatilité intégrée en présence d’erreurs de microstructure, nous développons plusieurs méthodes de bootstrap qui préservent la structure de dépendance et l’hétérogénéité dans la moyenne des données originelles. Le troisième essai développe une méthode de bootstrap sous l’hypothèse de Gaussianité locale des données financières de hautes fréquences. Le premier chapitre est intitulé: "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns". Nous proposons dans ce chapitre, des méthodes de bootstrap robustes à la présence d’erreurs de microstructure. Particulièrement nous nous sommes focalisés sur la volatilité réalisée utilisant des rendements "pré-moyennés" proposés par Podolskij et Vetter (2009), où les rendements "pré-moyennés" sont construits sur des blocs de rendements à hautes fréquences consécutifs qui ne se chevauchent pas. Le "pré-moyennement" permet de réduire l’influence de l’effet de microstructure avant d’appliquer la volatilité réalisée. Le non-chevauchement des blocs fait que les rendements "pré-moyennés" sont asymptotiquement indépendants, mais possiblement hétéroscédastiques. Ce qui motive l’application du wild bootstrap dans ce contexte. Nous montrons la validité théorique du bootstrap pour construire des intervalles de type percentile et percentile-t. Les simulations Monte Carlo montrent que le bootstrap peut améliorer les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques, pourvu que le choix de la variable externe soit fait de façon appropriée. Nous illustrons ces méthodes en utilisant des données financières réelles. Le deuxième chapitre est intitulé : "Bootstrapping pre-averaged realized volatility under market microstructure noise". Nous développons dans ce chapitre une méthode de bootstrap par bloc basée sur l’approche "pré-moyennement" de Jacod et al. (2009), où les rendements "pré-moyennés" sont construits sur des blocs de rendements à haute fréquences consécutifs qui se chevauchent. Le chevauchement des blocs induit une forte dépendance dans la structure des rendements "pré-moyennés". En effet les rendements "pré-moyennés" sont m-dépendant avec m qui croît à une vitesse plus faible que la taille d’échantillon n. Ceci motive l’application d’un bootstrap par bloc spécifique. Nous montrons que le bloc bootstrap suggéré par Bühlmann et Künsch (1995) n’est valide que lorsque la volatilité est constante. Ceci est dû à l’hétérogénéité dans la moyenne des rendements "pré-moyennés" au carré lorsque la volatilité est stochastique. Nous proposons donc une nouvelle procédure de bootstrap qui combine le wild bootstrap et le bootstrap par bloc, de telle sorte que la dépendance sérielle des rendements "pré-moyennés" est préservée à l’intérieur des blocs et la condition d’homogénéité nécessaire pour la validité du bootstrap est respectée. Sous des conditions de taille de bloc, nous montrons que cette méthode est convergente. Les simulations Monte Carlo montrent que le bootstrap améliore les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques. Nous illustrons cette méthode en utilisant des données financières réelles. Le troisième chapitre est intitulé: "Bootstrapping realized covolatility measures under local Gaussianity assumption". Dans ce chapitre nous montrons, comment et dans quelle mesure on peut approximer les distributions des estimateurs de mesures de co-volatilité sous l’hypothèse de Gaussianité locale des rendements. En particulier nous proposons une nouvelle méthode de bootstrap sous ces hypothèses. Nous nous sommes focalisés sur la volatilité réalisée et sur le beta réalisé. Nous montrons que la nouvelle méthode de bootstrap appliquée au beta réalisé était capable de répliquer les cummulants au deuxième ordre, tandis qu’il procurait une amélioration au troisième degré lorsqu’elle est appliquée à la volatilité réalisée. Ces résultats améliorent donc les résultats existants dans cette littérature, notamment ceux de Gonçalves et Meddahi (2009) et de Dovonon, Gonçalves et Meddahi (2013). Les simulations Monte Carlo montrent que le bootstrap améliore les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques et les résultats de bootstrap existants. Nous illustrons cette méthode en utilisant des données financières réelles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'objectif de cette thèse est de présenter différentes applications du programme de recherche de calcul conditionnel distribué. On espère que ces applications, ainsi que la théorie présentée ici, mènera à une solution générale du problème d'intelligence artificielle, en particulier en ce qui a trait à la nécessité d'efficience. La vision du calcul conditionnel distribué consiste à accélérer l'évaluation et l'entraînement de modèles profonds, ce qui est très différent de l'objectif usuel d'améliorer sa capacité de généralisation et d'optimisation. Le travail présenté ici a des liens étroits avec les modèles de type mélange d'experts. Dans le chapitre 2, nous présentons un nouvel algorithme d'apprentissage profond qui utilise une forme simple d'apprentissage par renforcement sur un modèle d'arbre de décisions à base de réseau de neurones. Nous démontrons la nécessité d'une contrainte d'équilibre pour maintenir la distribution d'exemples aux experts uniforme et empêcher les monopoles. Pour rendre le calcul efficient, l'entrainement et l'évaluation sont contraints à être éparse en utilisant un routeur échantillonnant des experts d'une distribution multinomiale étant donné un exemple. Dans le chapitre 3, nous présentons un nouveau modèle profond constitué d'une représentation éparse divisée en segments d'experts. Un modèle de langue à base de réseau de neurones est construit à partir des transformations éparses entre ces segments. L'opération éparse par bloc est implémentée pour utilisation sur des cartes graphiques. Sa vitesse est comparée à deux opérations denses du même calibre pour démontrer le gain réel de calcul qui peut être obtenu. Un modèle profond utilisant des opérations éparses contrôlées par un routeur distinct des experts est entraîné sur un ensemble de données d'un milliard de mots. Un nouvel algorithme de partitionnement de données est appliqué sur un ensemble de mots pour hiérarchiser la couche de sortie d'un modèle de langage, la rendant ainsi beaucoup plus efficiente. Le travail présenté dans cette thèse est au centre de la vision de calcul conditionnel distribué émis par Yoshua Bengio. Elle tente d'appliquer la recherche dans le domaine des mélanges d'experts aux modèles profonds pour améliorer leur vitesse ainsi que leur capacité d'optimisation. Nous croyons que la théorie et les expériences de cette thèse sont une étape importante sur la voie du calcul conditionnel distribué car elle cadre bien le problème, surtout en ce qui concerne la compétitivité des systèmes d'experts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a framework for analysis of cross-sectional dependence in the idiosyncratic volatilities of assets using high frequency data. We first consider the estimation of standard measures of dependence in the idiosyncratic volatilities such as covariances and correlations. Next, we study an idiosyncratic volatility factor model, in which we decompose the co-movements in idiosyncratic volatilities into two parts: those related to factors such as the market volatility, and the residual co-movements. When using high frequency data, naive estimators of all of the above measures are biased due to the estimation errors in idiosyncratic volatility. We provide bias-corrected estimators and establish their asymptotic properties. We apply our estimators to high-frequency data on 27 individual stocks from nine different sectors, and document strong cross-sectional dependence in their idiosyncratic volatilities. We also find that on average 74% of this dependence can be explained by the market volatility.