13 resultados para Computer vision methods for sign language recognition
em Université de Montréal, Canada
Resumo:
L’objectif de cette thèse par articles est de présenter modestement quelques étapes du parcours qui mènera (on espère) à une solution générale du problème de l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun une différente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte plus général, et dans certains cas elles on tété appliquées ailleurs, mais ceci ne sera pas abordé dans le contexte de cette de thèse. Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike- and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démontrons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand très peu d’exemples étiquetés sont disponibles pour l’entraînement. Partant d’un modèle CPSS, nous construisons ensuite une architecture profonde, la machine de Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de manière à simplifier d’entraînement des machines de Boltzmann profondes qui nécessitent normalement une phase de pré-entraînement glouton pour chaque couche. Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière pratique. Dans le deuxième article, nous revenons au problème d’entraînement joint de machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de modèles, nous introduisons un nouveau critère d’entraînement qui donne naissance aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les MBP-MP sont entraînables en une seule étape et ont un meilleur taux de succès en classification que les MBP classiques. Elles s’entraînent aussi avec des méthodes variationelles standard au lieu de nécessiter un classificateur discriminant pour obtenir un bon taux de succès en classification. Par contre, un des inconvénients de tels modèles est leur incapacité de générer deséchantillons, mais ceci n’est pas trop grave puisque la performance de classification des machines de Boltzmann profondes n’est plus une priorité étant donné les dernières avancées en apprentissage supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont capable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent pas faire, telles que celle de classifier des données incomplètes ou encore celle de combler intelligemment l’information manquante dans ces données incomplètes. Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de transformations importantes du domaine de l’apprentissage à réseaux neuronaux profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par Geoffrey Hinton. Dropout rend possible un entraînement purement supervisé d’architectures de propagation unidirectionnel sans être exposé au danger de sur- entraînement. Le troisième article présenté dans cette thèse introduit une nouvelle fonction d’activation spécialement con ̧cue pour aller avec l’algorithme de Dropout. Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation multi-canal dans un contexte d’apprentissage purement supervisé. Nous démontrons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies par l’utilisation de maxout. Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la transcription d’adresses de maisons à plusieurs chiffres. En combinant maxout avec une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution, nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui des humains sur un ensemble de données coriace constitué de photos prises par les voitures de Google. Ce système a été déployé avec succès chez Google pour lire environ cent million d’adresses de maisons.
Resumo:
Lors d'une intervention conversationnelle, le langage est supporté par une communication non-verbale qui joue un rôle central dans le comportement social humain en permettant de la rétroaction et en gérant la synchronisation, appuyant ainsi le contenu et la signification du discours. En effet, 55% du message est véhiculé par les expressions faciales, alors que seulement 7% est dû au message linguistique et 38% au paralangage. L'information concernant l'état émotionnel d'une personne est généralement inférée par les attributs faciaux. Cependant, on ne dispose pas vraiment d'instruments de mesure spécifiquement dédiés à ce type de comportements. En vision par ordinateur, on s'intéresse davantage au développement de systèmes d'analyse automatique des expressions faciales prototypiques pour les applications d'interaction homme-machine, d'analyse de vidéos de réunions, de sécurité, et même pour des applications cliniques. Dans la présente recherche, pour appréhender de tels indicateurs observables, nous essayons d'implanter un système capable de construire une source consistante et relativement exhaustive d'informations visuelles, lequel sera capable de distinguer sur un visage les traits et leurs déformations, permettant ainsi de reconnaître la présence ou absence d'une action faciale particulière. Une réflexion sur les techniques recensées nous a amené à explorer deux différentes approches. La première concerne l'aspect apparence dans lequel on se sert de l'orientation des gradients pour dégager une représentation dense des attributs faciaux. Hormis la représentation faciale, la principale difficulté d'un système, qui se veut être général, est la mise en œuvre d'un modèle générique indépendamment de l'identité de la personne, de la géométrie et de la taille des visages. La démarche qu'on propose repose sur l'élaboration d'un référentiel prototypique à partir d'un recalage par SIFT-flow dont on démontre, dans cette thèse, la supériorité par rapport à un alignement conventionnel utilisant la position des yeux. Dans une deuxième approche, on fait appel à un modèle géométrique à travers lequel les primitives faciales sont représentées par un filtrage de Gabor. Motivé par le fait que les expressions faciales sont non seulement ambigües et incohérentes d'une personne à une autre mais aussi dépendantes du contexte lui-même, à travers cette approche, on présente un système personnalisé de reconnaissance d'expressions faciales, dont la performance globale dépend directement de la performance du suivi d'un ensemble de points caractéristiques du visage. Ce suivi est effectué par une forme modifiée d'une technique d'estimation de disparité faisant intervenir la phase de Gabor. Dans cette thèse, on propose une redéfinition de la mesure de confiance et introduisons une procédure itérative et conditionnelle d'estimation du déplacement qui offrent un suivi plus robuste que les méthodes originales.
Resumo:
Les pays industrialisés comme le Canada doivent faire face au vieillissement de leur population. En particulier, la majorité des personnes âgées, vivant à domicile et souvent seules, font face à des situations à risques telles que des chutes. Dans ce contexte, la vidéosurveillance est une solution innovante qui peut leur permettre de vivre normalement dans un environnement sécurisé. L’idée serait de placer un réseau de caméras dans l’appartement de la personne pour détecter automatiquement une chute. En cas de problème, un message pourrait être envoyé suivant l’urgence aux secours ou à la famille via une connexion internet sécurisée. Pour un système bas coût, nous avons limité le nombre de caméras à une seule par pièce ce qui nous a poussé à explorer les méthodes monoculaires de détection de chutes. Nous avons d’abord exploré le problème d’un point de vue 2D (image) en nous intéressant aux changements importants de la silhouette de la personne lors d’une chute. Les données d’activités normales d’une personne âgée ont été modélisées par un mélange de gaussiennes nous permettant de détecter tout événement anormal. Notre méthode a été validée à l’aide d’une vidéothèque de chutes simulées et d’activités normales réalistes. Cependant, une information 3D telle que la localisation de la personne par rapport à son environnement peut être très intéressante pour un système d’analyse de comportement. Bien qu’il soit préférable d’utiliser un système multi-caméras pour obtenir une information 3D, nous avons prouvé qu’avec une seule caméra calibrée, il était possible de localiser une personne dans son environnement grâce à sa tête. Concrêtement, la tête de la personne, modélisée par une ellipsoide, est suivie dans la séquence d’images à l’aide d’un filtre à particules. La précision de la localisation 3D de la tête a été évaluée avec une bibliothèque de séquence vidéos contenant les vraies localisations 3D obtenues par un système de capture de mouvement (Motion Capture). Un exemple d’application utilisant la trajectoire 3D de la tête est proposée dans le cadre de la détection de chutes. En conclusion, un système de vidéosurveillance pour la détection de chutes avec une seule caméra par pièce est parfaitement envisageable. Pour réduire au maximum les risques de fausses alarmes, une méthode hybride combinant des informations 2D et 3D pourrait être envisagée.
Resumo:
En raison de l’utilisation d’un mode de communication totalement différent de celui des entendants, le langage des signes, et de l’absence quasi-totale d’afférences en provenance du système auditif, il y a de fortes chances que d’importantes modifications fonctionnelles et structurales s’effectuent dans le cerveau des individus sourds profonds. Les études antérieures suggèrent que cette réorganisation risque d’avoir des répercussions plus importantes sur les structures corticales situées le long de la voie visuelle dorsale qu’à l’intérieur de celles situées à l’intérieur de la voie ventrale. L’hypothèse proposée par Ungerleider et Mishkin (1982) quant à la présence de deux voies visuelles dans les régions occipitales, même si elle demeure largement acceptée dans la communauté scientifique, s’en trouve aussi relativement contestée. Une voie se projetant du cortex strié vers les régions pariétales postérieures, est impliquée dans la vision spatiale, et l’autre se projetant vers les régions du cortex temporal inférieur, est responsable de la reconnaissance de la forme. Goodale et Milner (1992) ont par la suite proposé que la voie dorsale, en plus de son implication dans le traitement de l’information visuo-spatiale, joue un rôle dans les ajustements sensori-moteurs nécessaires afin de guider les actions. Dans ce contexte, il est tout à fait plausible de considérer qu’un groupe de personne utilisant un langage sensori-moteur comme le langage des signes dans la vie de tous les jours, s’expose à une réorganisation cérébrale ciblant effectivement la voie dorsale. L’objectif de la première étude est d’explorer ces deux voies visuelles et plus particulièrement, la voie dorsale, chez des individus entendants par l’utilisation de deux stimuli de mouvement dont les caractéristiques physiques sont très similaires, mais qui évoquent un traitement relativement différent dans les régions corticales visuelles. Pour ce faire, un stimulus de forme définie par le mouvement et un stimulus de mouvement global ont été utilisés. Nos résultats indiquent que les voies dorsale et ventrale procèdent au traitement d’une forme définie par le mouvement, tandis que seule la voie dorsale est activée lors d’une tâche de mouvement global dont les caractéristiques psychophysiques sont relativement semblables. Nous avons utilisé, subséquemment, ces mêmes stimulations activant les voies dorsales et ventrales afin de vérifier quels pourraient être les différences fonctionnelles dans les régions visuelles et auditives chez des individus sourds profonds. Plusieurs études présentent la réorganisation corticale dans les régions visuelles et auditives en réponse à l’absence d’une modalité sensorielle. Cependant, l’implication spécifique des voies visuelles dorsale et ventrale demeure peu étudiée à ce jour, malgré plusieurs résultats proposant une implication plus importante de la voie dorsale dans la réorganisation visuelle chez les sourds. Suite à l’utilisation de l’imagerie cérébrale fonctionnelle pour investiguer ces questions, nos résultats ont été à l’encontre de cette hypothèse suggérant une réorganisation ciblant particulièrement la voie dorsale. Nos résultats indiquent plutôt une réorganisation non-spécifique au type de stimulation utilisé. En effet, le gyrus temporal supérieur est activé chez les sourds suite à la présentation de toutes nos stimulations visuelles, peu importe leur degré de complexité. Le groupe de participants sourds montre aussi une activation du cortex associatif postérieur, possiblement recruté pour traiter l’information visuelle en raison de l’absence de compétition en provenance des régions temporales auditives. Ces résultats ajoutent aux données déjà recueillies sur les modifications fonctionnelles qui peuvent survenir dans tout le cerveau des personnes sourdes, cependant les corrélats anatomiques de la surdité demeurent méconnus chez cette population. Une troisième étude se propose donc d’examiner les modifications structurales pouvant survenir dans le cerveau des personnes sourdes profondes congénitales ou prélinguales. Nos résultats montrent que plusieurs régions cérébrales semblent être différentes entre le groupe de participants sourds et celui des entendants. Nos analyses ont montré des augmentations de volume, allant jusqu’à 20%, dans les lobes frontaux, incluant l’aire de Broca et d’autres régions adjacentes impliqués dans le contrôle moteur et la production du langage. Les lobes temporaux semblent aussi présenter des différences morphométriques même si ces dernières ne sont pas significatives. Enfin, des différences de volume sont également recensées dans les parties du corps calleux contenant les axones permettant la communication entre les régions temporales et occipitales des deux hémisphères.
Resumo:
Cette thése a été réalisée dans le cadre d'une cotutelle avec l'Institut National Polytechnique de Grenoble (France). La recherche a été effectuée au sein des laboratoires de vision 3D (DIRO, UdM) et PERCEPTION-INRIA (Grenoble).
Resumo:
Ce mémoire est composé de trois articles et présente les résultats de travaux de recherche effectués dans le but d'améliorer les techniques actuelles permettant d'utiliser des données associées à certaines tâches dans le but d'aider à l'entraînement de réseaux de neurones sur une tâche différente. Les deux premiers articles présentent de nouveaux ensembles de données créés pour permettre une meilleure évaluation de ce type de techniques d'apprentissage machine. Le premier article introduit une suite d'ensembles de données pour la tâche de reconnaissance automatique de chiffres écrits à la main. Ces ensembles de données ont été générés à partir d'un ensemble de données déjà existant, MNIST, auquel des nouveaux facteurs de variation ont été ajoutés. Le deuxième article introduit un ensemble de données pour la tâche de reconnaissance automatique d'expressions faciales. Cet ensemble de données est composé d'images de visages qui ont été collectées automatiquement à partir du Web et ensuite étiquetées. Le troisième et dernier article présente deux nouvelles approches, dans le contexte de l'apprentissage multi-tâches, pour tirer avantage de données pour une tâche donnée afin d'améliorer les performances d'un modèle sur une tâche différente. La première approche est une généralisation des neurones Maxout récemment proposées alors que la deuxième consiste en l'application dans un contexte supervisé d'une technique permettant d'inciter des neurones à apprendre des fonctions orthogonales, à l'origine proposée pour utilisation dans un contexte semi-supervisé.
Resumo:
Dans cette dissertation, nous présentons plusieurs techniques d’apprentissage d’espaces sémantiques pour plusieurs domaines, par exemple des mots et des images, mais aussi à l’intersection de différents domaines. Un espace de représentation est appelé sémantique si des entités jugées similaires par un être humain, ont leur similarité préservée dans cet espace. La première publication présente un enchaînement de méthodes d’apprentissage incluant plusieurs techniques d’apprentissage non supervisé qui nous a permis de remporter la compétition “Unsupervised and Transfer Learning Challenge” en 2011. Le deuxième article présente une manière d’extraire de l’information à partir d’un contexte structuré (177 détecteurs d’objets à différentes positions et échelles). On montrera que l’utilisation de la structure des données combinée à un apprentissage non supervisé permet de réduire la dimensionnalité de 97% tout en améliorant les performances de reconnaissance de scènes de +5% à +11% selon l’ensemble de données. Dans le troisième travail, on s’intéresse à la structure apprise par les réseaux de neurones profonds utilisés dans les deux précédentes publications. Plusieurs hypothèses sont présentées et testées expérimentalement montrant que l’espace appris a de meilleures propriétés de mixage (facilitant l’exploration de différentes classes durant le processus d’échantillonnage). Pour la quatrième publication, on s’intéresse à résoudre un problème d’analyse syntaxique et sémantique avec des réseaux de neurones récurrents appris sur des fenêtres de contexte de mots. Dans notre cinquième travail, nous proposons une façon d’effectuer de la recherche d’image ”augmentée” en apprenant un espace sémantique joint où une recherche d’image contenant un objet retournerait aussi des images des parties de l’objet, par exemple une recherche retournant des images de ”voiture” retournerait aussi des images de ”pare-brises”, ”coffres”, ”roues” en plus des images initiales.
Resumo:
Ce mémoire s'inscrit dans le domaine de la vision par ordinateur. Elle s'intéresse à la calibration de systèmes de caméras stéréoscopiques, à la mise en correspondance caméra-projecteur, à la reconstruction 3D, à l'alignement photométrique de projecteurs, au maillage de nuages de points, ainsi qu'au paramétrage de surfaces. Réalisé dans le cadre du projet LightTwist du laboratoire Vision3D, elle vise à permettre la projection sur grandes surfaces arbitraires à l'aide de plusieurs projecteurs. Ce genre de projection est souvent utilisé en arts technologiques, en théâtre et en projection architecturale. Dans ce mémoire, on procède au calibrage des caméras, suivi d'une reconstruction 3D par morceaux basée sur une méthode active de mise en correspondance, la lumière non structurée. Après un alignement et un maillage automatisés, on dispose d'un modèle 3D complet de la surface de projection. Ce mémoire introduit ensuite une nouvelle approche pour le paramétrage de modèles 3D basée sur le calcul efficace de distances géodésiques sur des maillages. L'usager n'a qu'à délimiter manuellement le contour de la zone de projection sur le modèle. Le paramétrage final est calculé en utilisant les distances obtenues pour chaque point du modèle. Jusqu'à maintenant, les méthodes existante ne permettaient pas de paramétrer des modèles ayant plus d'un million de points.
Resumo:
De plus en plus de recherches sur les Interactions Humain-Machine (IHM) tentent d’effectuer des analyses fines de l’interaction afin de faire ressortir ce qui influence les comportements des utilisateurs. Tant au niveau de l’évaluation de la performance que de l’expérience des utilisateurs, on note qu’une attention particulière est maintenant portée aux réactions émotionnelles et cognitives lors de l’interaction. Les approches qualitatives standards sont limitées, car elles se fondent sur l’observation et des entrevues après l’interaction, limitant ainsi la précision du diagnostic. L’expérience utilisateur et les réactions émotionnelles étant de nature hautement dynamique et contextualisée, les approches d’évaluation doivent l’être de même afin de permettre un diagnostic précis de l’interaction. Cette thèse présente une approche d’évaluation quantitative et dynamique qui permet de contextualiser les réactions des utilisateurs afin d’en identifier les antécédents dans l’interaction avec un système. Pour ce faire, ce travail s’articule autour de trois axes. 1) La reconnaissance automatique des buts et de la structure de tâches de l’utilisateur, à l’aide de mesures oculométriques et d’activité dans l’environnement par apprentissage machine. 2) L’inférence de construits psychologiques (activation, valence émotionnelle et charge cognitive) via l’analyse des signaux physiologiques. 3) Le diagnostic de l‘interaction reposant sur le couplage dynamique des deux précédentes opérations. Les idées et le développement de notre approche sont illustrés par leur application dans deux contextes expérimentaux : le commerce électronique et l’apprentissage par simulation. Nous présentons aussi l’outil informatique complet qui a été implémenté afin de permettre à des professionnels en évaluation (ex. : ergonomes, concepteurs de jeux, formateurs) d’utiliser l’approche proposée pour l’évaluation d’IHM. Celui-ci est conçu de manière à faciliter la triangulation des appareils de mesure impliqués dans ce travail et à s’intégrer aux méthodes classiques d’évaluation de l’interaction (ex. : questionnaires et codage des observations).
Resumo:
L'objectif du présent mémoire vise à présenter des modèles de séries chronologiques multivariés impliquant des vecteurs aléatoires dont chaque composante est non-négative. Nous considérons les modèles vMEM (modèles vectoriels et multiplicatifs avec erreurs non-négatives) présentés par Cipollini, Engle et Gallo (2006) et Cipollini et Gallo (2010). Ces modèles représentent une généralisation au cas multivarié des modèles MEM introduits par Engle (2002). Ces modèles trouvent notamment des applications avec les séries chronologiques financières. Les modèles vMEM permettent de modéliser des séries chronologiques impliquant des volumes d'actif, des durées, des variances conditionnelles, pour ne citer que ces applications. Il est également possible de faire une modélisation conjointe et d'étudier les dynamiques présentes entre les séries chronologiques formant le système étudié. Afin de modéliser des séries chronologiques multivariées à composantes non-négatives, plusieurs spécifications du terme d'erreur vectoriel ont été proposées dans la littérature. Une première approche consiste à considérer l'utilisation de vecteurs aléatoires dont la distribution du terme d'erreur est telle que chaque composante est non-négative. Cependant, trouver une distribution multivariée suffisamment souple définie sur le support positif est plutôt difficile, au moins avec les applications citées précédemment. Comme indiqué par Cipollini, Engle et Gallo (2006), un candidat possible est une distribution gamma multivariée, qui impose cependant des restrictions sévères sur les corrélations contemporaines entre les variables. Compte tenu que les possibilités sont limitées, une approche possible est d'utiliser la théorie des copules. Ainsi, selon cette approche, des distributions marginales (ou marges) peuvent être spécifiées, dont les distributions en cause ont des supports non-négatifs, et une fonction de copule permet de tenir compte de la dépendance entre les composantes. Une technique d'estimation possible est la méthode du maximum de vraisemblance. Une approche alternative est la méthode des moments généralisés (GMM). Cette dernière méthode présente l'avantage d'être semi-paramétrique dans le sens que contrairement à l'approche imposant une loi multivariée, il n'est pas nécessaire de spécifier une distribution multivariée pour le terme d'erreur. De manière générale, l'estimation des modèles vMEM est compliquée. Les algorithmes existants doivent tenir compte du grand nombre de paramètres et de la nature élaborée de la fonction de vraisemblance. Dans le cas de l'estimation par la méthode GMM, le système à résoudre nécessite également l'utilisation de solveurs pour systèmes non-linéaires. Dans ce mémoire, beaucoup d'énergies ont été consacrées à l'élaboration de code informatique (dans le langage R) pour estimer les différents paramètres du modèle. Dans le premier chapitre, nous définissons les processus stationnaires, les processus autorégressifs, les processus autorégressifs conditionnellement hétéroscédastiques (ARCH) et les processus ARCH généralisés (GARCH). Nous présentons aussi les modèles de durées ACD et les modèles MEM. Dans le deuxième chapitre, nous présentons la théorie des copules nécessaire pour notre travail, dans le cadre des modèles vectoriels et multiplicatifs avec erreurs non-négatives vMEM. Nous discutons également des méthodes possibles d'estimation. Dans le troisième chapitre, nous discutons les résultats des simulations pour plusieurs méthodes d'estimation. Dans le dernier chapitre, des applications sur des séries financières sont présentées. Le code R est fourni dans une annexe. Une conclusion complète ce mémoire.
Resumo:
Cette thèse porte sur la reconstruction active de modèles 3D à l’aide d’une caméra et d’un projecteur. Les méthodes de reconstruction standards utilisent des motifs de lumière codée qui ont leurs forces et leurs faiblesses. Nous introduisons de nouveaux motifs basés sur la lumière non structurée afin de pallier aux manques des méthodes existantes. Les travaux présentés s’articulent autour de trois axes : la robustesse, la précision et finalement la comparaison des patrons de lumière non structurée aux autres méthodes. Les patrons de lumière non structurée se différencient en premier lieu par leur robustesse aux interréflexions et aux discontinuités de profondeur. Ils sont conçus de sorte à homogénéiser la quantité d’illumination indirecte causée par la projection sur des surfaces difficiles. En contrepartie, la mise en correspondance des images projetées et capturées est plus complexe qu’avec les méthodes dites structurées. Une méthode d’appariement probabiliste et efficace est proposée afin de résoudre ce problème. Un autre aspect important des reconstructions basées sur la lumière non structurée est la capacité de retrouver des correspondances sous-pixels, c’est-à-dire à un niveau de précision plus fin que le pixel. Nous présentons une méthode de génération de code de très grande longueur à partir des motifs de lumière non structurée. Ces codes ont l’avantage double de permettre l’extraction de correspondances plus précises tout en requérant l’utilisation de moins d’images. Cette contribution place notre méthode parmi les meilleures au niveau de la précision tout en garantissant une très bonne robustesse. Finalement, la dernière partie de cette thèse s’intéresse à la comparaison des méthodes existantes, en particulier sur la relation entre la quantité d’images projetées et la qualité de la reconstruction. Bien que certaines méthodes nécessitent un nombre constant d’images, d’autres, comme la nôtre, peuvent se contenter d’en utiliser moins aux dépens d’une qualité moindre. Nous proposons une méthode simple pour établir une correspondance optimale pouvant servir de référence à des fins de comparaison. Enfin, nous présentons des méthodes hybrides qui donnent de très bons résultats avec peu d’images.
Resumo:
L’analyse de la marche a émergé comme l’un des domaines médicaux le plus im- portants récemment. Les systèmes à base de marqueurs sont les méthodes les plus fa- vorisées par l’évaluation du mouvement humain et l’analyse de la marche, cependant, ces systèmes nécessitent des équipements et de l’expertise spécifiques et sont lourds, coûteux et difficiles à utiliser. De nombreuses approches récentes basées sur la vision par ordinateur ont été développées pour réduire le coût des systèmes de capture de mou- vement tout en assurant un résultat de haute précision. Dans cette thèse, nous présentons notre nouveau système d’analyse de la démarche à faible coût, qui est composé de deux caméras vidéo monoculaire placées sur le côté gauche et droit d’un tapis roulant. Chaque modèle 2D de la moitié du squelette humain est reconstruit à partir de chaque vue sur la base de la segmentation dynamique de la couleur, l’analyse de la marche est alors effectuée sur ces deux modèles. La validation avec l’état de l’art basée sur la vision du système de capture de mouvement (en utilisant le Microsoft Kinect) et la réalité du ter- rain (avec des marqueurs) a été faite pour démontrer la robustesse et l’efficacité de notre système. L’erreur moyenne de l’estimation du modèle de squelette humain par rapport à la réalité du terrain entre notre méthode vs Kinect est très prometteur: les joints des angles de cuisses (6,29◦ contre 9,68◦), jambes (7,68◦ contre 11,47◦), pieds (6,14◦ contre 13,63◦), la longueur de la foulée (6.14cm rapport de 13.63cm) sont meilleurs et plus stables que ceux de la Kinect, alors que le système peut maintenir une précision assez proche de la Kinect pour les bras (7,29◦ contre 6,12◦), les bras inférieurs (8,33◦ contre 8,04◦), et le torse (8,69◦contre 6,47◦). Basé sur le modèle de squelette obtenu par chaque méthode, nous avons réalisé une étude de symétrie sur différentes articulations (coude, genou et cheville) en utilisant chaque méthode sur trois sujets différents pour voir quelle méthode permet de distinguer plus efficacement la caractéristique symétrie / asymétrie de la marche. Dans notre test, notre système a un angle de genou au maximum de 8,97◦ et 13,86◦ pour des promenades normale et asymétrique respectivement, tandis que la Kinect a donné 10,58◦et 11,94◦. Par rapport à la réalité de terrain, 7,64◦et 14,34◦, notre système a montré une plus grande précision et pouvoir discriminant entre les deux cas.
Resumo:
En apprentissage automatique, domaine qui consiste à utiliser des données pour apprendre une solution aux problèmes que nous voulons confier à la machine, le modèle des Réseaux de Neurones Artificiels (ANN) est un outil précieux. Il a été inventé voilà maintenant près de soixante ans, et pourtant, il est encore de nos jours le sujet d'une recherche active. Récemment, avec l'apprentissage profond, il a en effet permis d'améliorer l'état de l'art dans de nombreux champs d'applications comme la vision par ordinateur, le traitement de la parole et le traitement des langues naturelles. La quantité toujours grandissante de données disponibles et les améliorations du matériel informatique ont permis de faciliter l'apprentissage de modèles à haute capacité comme les ANNs profonds. Cependant, des difficultés inhérentes à l'entraînement de tels modèles, comme les minima locaux, ont encore un impact important. L'apprentissage profond vise donc à trouver des solutions, en régularisant ou en facilitant l'optimisation. Le pré-entraînnement non-supervisé, ou la technique du ``Dropout'', en sont des exemples. Les deux premiers travaux présentés dans cette thèse suivent cette ligne de recherche. Le premier étudie les problèmes de gradients diminuants/explosants dans les architectures profondes. Il montre que des choix simples, comme la fonction d'activation ou l'initialisation des poids du réseaux, ont une grande influence. Nous proposons l'initialisation normalisée pour faciliter l'apprentissage. Le second se focalise sur le choix de la fonction d'activation et présente le rectifieur, ou unité rectificatrice linéaire. Cette étude a été la première à mettre l'accent sur les fonctions d'activations linéaires par morceaux pour les réseaux de neurones profonds en apprentissage supervisé. Aujourd'hui, ce type de fonction d'activation est une composante essentielle des réseaux de neurones profonds. Les deux derniers travaux présentés se concentrent sur les applications des ANNs en traitement des langues naturelles. Le premier aborde le sujet de l'adaptation de domaine pour l'analyse de sentiment, en utilisant des Auto-Encodeurs Débruitants. Celui-ci est encore l'état de l'art de nos jours. Le second traite de l'apprentissage de données multi-relationnelles avec un modèle à base d'énergie, pouvant être utilisé pour la tâche de désambiguation de sens.