3 resultados para Computational power

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Malgré des progrès constants en termes de capacité de calcul, mémoire et quantité de données disponibles, les algorithmes d'apprentissage machine doivent se montrer efficaces dans l'utilisation de ces ressources. La minimisation des coûts est évidemment un facteur important, mais une autre motivation est la recherche de mécanismes d'apprentissage capables de reproduire le comportement d'êtres intelligents. Cette thèse aborde le problème de l'efficacité à travers plusieurs articles traitant d'algorithmes d'apprentissage variés : ce problème est vu non seulement du point de vue de l'efficacité computationnelle (temps de calcul et mémoire utilisés), mais aussi de celui de l'efficacité statistique (nombre d'exemples requis pour accomplir une tâche donnée). Une première contribution apportée par cette thèse est la mise en lumière d'inefficacités statistiques dans des algorithmes existants. Nous montrons ainsi que les arbres de décision généralisent mal pour certains types de tâches (chapitre 3), de même que les algorithmes classiques d'apprentissage semi-supervisé à base de graphe (chapitre 5), chacun étant affecté par une forme particulière de la malédiction de la dimensionalité. Pour une certaine classe de réseaux de neurones, appelés réseaux sommes-produits, nous montrons qu'il peut être exponentiellement moins efficace de représenter certaines fonctions par des réseaux à une seule couche cachée, comparé à des réseaux profonds (chapitre 4). Nos analyses permettent de mieux comprendre certains problèmes intrinsèques liés à ces algorithmes, et d'orienter la recherche dans des directions qui pourraient permettre de les résoudre. Nous identifions également des inefficacités computationnelles dans les algorithmes d'apprentissage semi-supervisé à base de graphe (chapitre 5), et dans l'apprentissage de mélanges de Gaussiennes en présence de valeurs manquantes (chapitre 6). Dans les deux cas, nous proposons de nouveaux algorithmes capables de traiter des ensembles de données significativement plus grands. Les deux derniers chapitres traitent de l'efficacité computationnelle sous un angle différent. Dans le chapitre 7, nous analysons de manière théorique un algorithme existant pour l'apprentissage efficace dans les machines de Boltzmann restreintes (la divergence contrastive), afin de mieux comprendre les raisons qui expliquent le succès de cet algorithme. Finalement, dans le chapitre 8 nous présentons une application de l'apprentissage machine dans le domaine des jeux vidéo, pour laquelle le problème de l'efficacité computationnelle est relié à des considérations d'ingénierie logicielle et matérielle, souvent ignorées en recherche mais ô combien importantes en pratique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La synthèse d'images dites photoréalistes nécessite d'évaluer numériquement la manière dont la lumière et la matière interagissent physiquement, ce qui, malgré la puissance de calcul impressionnante dont nous bénéficions aujourd'hui et qui ne cesse d'augmenter, est encore bien loin de devenir une tâche triviale pour nos ordinateurs. Ceci est dû en majeure partie à la manière dont nous représentons les objets: afin de reproduire les interactions subtiles qui mènent à la perception du détail, il est nécessaire de modéliser des quantités phénoménales de géométries. Au moment du rendu, cette complexité conduit inexorablement à de lourdes requêtes d'entrées-sorties, qui, couplées à des évaluations d'opérateurs de filtrage complexes, rendent les temps de calcul nécessaires à produire des images sans défaut totalement déraisonnables. Afin de pallier ces limitations sous les contraintes actuelles, il est nécessaire de dériver une représentation multiéchelle de la matière. Dans cette thèse, nous construisons une telle représentation pour la matière dont l'interface correspond à une surface perturbée, une configuration qui se construit généralement via des cartes d'élévations en infographie. Nous dérivons notre représentation dans le contexte de la théorie des microfacettes (conçue à l'origine pour modéliser la réflectance de surfaces rugueuses), que nous présentons d'abord, puis augmentons en deux temps. Dans un premier temps, nous rendons la théorie applicable à travers plusieurs échelles d'observation en la généralisant aux statistiques de microfacettes décentrées. Dans l'autre, nous dérivons une procédure d'inversion capable de reconstruire les statistiques de microfacettes à partir de réponses de réflexion d'un matériau arbitraire dans les configurations de rétroréflexion. Nous montrons comment cette théorie augmentée peut être exploitée afin de dériver un opérateur général et efficace de rééchantillonnage approximatif de cartes d'élévations qui (a) préserve l'anisotropie du transport de la lumière pour n'importe quelle résolution, (b) peut être appliqué en amont du rendu et stocké dans des MIP maps afin de diminuer drastiquement le nombre de requêtes d'entrées-sorties, et (c) simplifie de manière considérable les opérations de filtrage par pixel, le tout conduisant à des temps de rendu plus courts. Afin de valider et démontrer l'efficacité de notre opérateur, nous synthétisons des images photoréalistes anticrenelées et les comparons à des images de référence. De plus, nous fournissons une implantation C++ complète tout au long de la dissertation afin de faciliter la reproduction des résultats obtenus. Nous concluons avec une discussion portant sur les limitations de notre approche, ainsi que sur les verrous restant à lever afin de dériver une représentation multiéchelle de la matière encore plus générale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Notre progiciel PoweR vise à faciliter l'obtention ou la vérification des études empiriques de puissance pour les tests d'ajustement. En tant que tel, il peut être considéré comme un outil de calcul de recherche reproductible, car il devient très facile à reproduire (ou détecter les erreurs) des résultats de simulation déjà publiés dans la littérature. En utilisant notre progiciel, il devient facile de concevoir de nouvelles études de simulation. Les valeurs critiques et puissances de nombreuses statistiques de tests sous une grande variété de distributions alternatives sont obtenues très rapidement et avec précision en utilisant un C/C++ et R environnement. On peut même compter sur le progiciel snow de R pour le calcul parallèle, en utilisant un processeur multicœur. Les résultats peuvent être affichés en utilisant des tables latex ou des graphiques spécialisés, qui peuvent être incorporés directement dans vos publications. Ce document donne un aperçu des principaux objectifs et les principes de conception ainsi que les stratégies d'adaptation et d'extension.