4 resultados para Classification of fruits and vegetables

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’objectif de modifier son poids est associé à certains comportements potentiellement dangereux, mais ses retombées sur les saines habitudes de vie des adolescents sont peu connues. L’objectif du mémoire est de quantifier les associations entre l’objectif relatif au contrôle du poids et la consommation de fruits et légumes, de boissons sucrées et d’aliments de restauration rapide, la prise du déjeuner et la pratique d’activité physique. Des régressions logistiques ont été effectuées sur les données de l’Enquête québécoise sur la santé des jeunes du secondaire 2010-2011. Respectivement, 25 %, 34 %, 12 % et 29 % des adolescents essayaient de perdre, maintenir, gagner du poids et ne rien faire à propos de leur poids. Chez les garçons et les filles, essayer de perdre du poids était associé à une probabilité plus faible de déjeuner quotidiennement (RC garçons = 0,72 ; 95%IC = 0,61 - 0,84, RC filles = 0,61 ; 95%IC = 0,56 -0,70) et chez les filles, cela était aussi associé à une probabilité plus élevée de consommer au moins cinq portions de fruits et légumes par jour (RC = 1,20 ; 95%IC = 1,04 - 1,37) et une probabilité plus faible de consommer des boissons sucrées quotidiennement (RC = 0,77 ; 95%IC = 0,66 - 0,90). Essayer de maintenir son poids et de gagner du poids étaient minimalement associés à une habitude plus délétère. L’objectif de contrôler son poids n’est donc pas strictement positif ou négatif. Il semble plus prudent de promouvoir directement les saines habitudes de vie plutôt que d’encourager l’adoption d’un objectif de contrôle du poids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper I criticize Alison Jaggar’s descriptions of feminist political theories. I propose an alternative classification of feminist theories that I think more accurately reflects the multiplication of feminist theories and philosophies. There are two main categories, “street theory” and academic theories, each with two sub-divisions, political spectrum and “differences” under street theory, and directly and indirectly political analyses under academic theories. My view explains why there are no radical feminists outside of North America and why there are so few socialist feminists inside North America. I argue, controversially, that radical feminism is a radical version of liberalism. I argue that “difference” feminist theories – theory by and about feminists of colour, queer feminists, feminists with disabilities and so on – belong in a separate sub-category of street theory, because they’ve had profound effects on feminist activism not tracked by traditional left-to-right classifications. Finally, I argue that, while academic feminist theories such as feminist existentialism or feminist sociological theory are generally unconnected to movement activism, they provide important feminist insights that may become importanby showing the advantages of my classification over Jaggar’s views.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’objectif de cette thèse par articles est de présenter modestement quelques étapes du parcours qui mènera (on espère) à une solution générale du problème de l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun une différente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte plus général, et dans certains cas elles on tété appliquées ailleurs, mais ceci ne sera pas abordé dans le contexte de cette de thèse. Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike- and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démontrons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand très peu d’exemples étiquetés sont disponibles pour l’entraînement. Partant d’un modèle CPSS, nous construisons ensuite une architecture profonde, la machine de Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de manière à simplifier d’entraînement des machines de Boltzmann profondes qui nécessitent normalement une phase de pré-entraînement glouton pour chaque couche. Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière pratique. Dans le deuxième article, nous revenons au problème d’entraînement joint de machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de modèles, nous introduisons un nouveau critère d’entraînement qui donne naissance aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les MBP-MP sont entraînables en une seule étape et ont un meilleur taux de succès en classification que les MBP classiques. Elles s’entraînent aussi avec des méthodes variationelles standard au lieu de nécessiter un classificateur discriminant pour obtenir un bon taux de succès en classification. Par contre, un des inconvénients de tels modèles est leur incapacité de générer deséchantillons, mais ceci n’est pas trop grave puisque la performance de classification des machines de Boltzmann profondes n’est plus une priorité étant donné les dernières avancées en apprentissage supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont capable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent pas faire, telles que celle de classifier des données incomplètes ou encore celle de combler intelligemment l’information manquante dans ces données incomplètes. Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de transformations importantes du domaine de l’apprentissage à réseaux neuronaux profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par Geoffrey Hinton. Dropout rend possible un entraînement purement supervisé d’architectures de propagation unidirectionnel sans être exposé au danger de sur- entraînement. Le troisième article présenté dans cette thèse introduit une nouvelle fonction d’activation spécialement con ̧cue pour aller avec l’algorithme de Dropout. Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation multi-canal dans un contexte d’apprentissage purement supervisé. Nous démontrons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies par l’utilisation de maxout. Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la transcription d’adresses de maisons à plusieurs chiffres. En combinant maxout avec une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution, nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui des humains sur un ensemble de données coriace constitué de photos prises par les voitures de Google. Ce système a été déployé avec succès chez Google pour lire environ cent million d’adresses de maisons.