11 resultados para Classification image technique
em Université de Montréal, Canada
Resumo:
L’objectif de cette recherche est la création d’une plateforme en ligne qui permettrait d’examiner les différences individuelles de stratégies de traitement de l’information visuelle dans différentes tâches de catégorisation des visages. Le but d’une telle plateforme est de récolter des données de participants géographiquement dispersés et dont les habiletés en reconnaissance des visages sont variables. En effet, de nombreuses études ont montré qu’il existe de grande variabilité dans le spectre des habiletés à reconnaître les visages, allant de la prosopagnosie développementale (Susilo & Duchaine, 2013), un trouble de reconnaissance des visages en l’absence de lésion cérébrale, aux super-recognizers, des individus dont les habiletés en reconnaissance des visages sont au-dessus de la moyenne (Russell, Duchaine & Nakayama, 2009). Entre ces deux extrêmes, les habiletés en reconnaissance des visages dans la population normale varient. Afin de démontrer la faisabilité de la création d’une telle plateforme pour des individus d’habiletés très variables, nous avons adapté une tâche de reconnaissance de l’identité des visages de célébrités utilisant la méthode Bubbles (Gosselin & Schyns, 2001) et avons recruté 14 sujets contrôles et un sujet présentant une prosopagnosie développementale. Nous avons pu mettre en évidence l’importance des yeux et de la bouche dans l’identification des visages chez les sujets « normaux ». Les meilleurs participants semblent, au contraire, utiliser majoritairement le côté gauche du visage (l’œil gauche et le côté gauche de la bouche).
Resumo:
Question : Cette thèse comporte deux articles portant sur l’étude d’expressions faciales émotionnelles. Le processus de développement d’une nouvelle banque de stimuli émotionnels fait l’objet du premier article, alors que le deuxième article utilise cette banque pour étudier l’effet de l’anxiété de trait sur la reconnaissance des expressions statiques. Méthodes : Un total de 1088 clips émotionnels (34 acteurs X 8 émotions X 4 exemplaire) ont été alignés spatialement et temporellement de sorte que les yeux et le nez de chaque acteur occupent le même endroit dans toutes les vidéos. Les vidéos sont toutes d’une durée de 500ms et contiennent l’Apex de l’expression. La banque d’expressions statiques fut créée à partir de la dernière image des clips. Les stimuli ont été soumis à un processus de validation rigoureux. Dans la deuxième étude, les expressions statiques sont utilisées conjointement avec la méthode Bubbles dans le but d’étudier la reconnaissance des émotions chez des participants anxieux. Résultats : Dans la première étude, les meilleurs stimuli ont été sélectionnés [2 (statique & dynamique) X 8 (expressions) X 10 (acteurs)] et forment la banque d’expressions STOIC. Dans la deuxième étude, il est démontré que les individus présentant de l'anxiété de trait utilisent préférentiellement les basses fréquences spatiales de la région buccale du visage et ont une meilleure reconnaissance des expressions de peur. Discussion : La banque d’expressions faciales STOIC comporte des caractéristiques uniques qui font qu’elle se démarque des autres. Elle peut être téléchargée gratuitement, elle contient des vidéos naturelles et tous les stimuli ont été alignés, ce qui fait d’elle un outil de choix pour la communauté scientifique et les cliniciens. Les stimuli statiques de STOIC furent utilisés pour franchir une première étape dans la recherche sur la perception des émotions chez des individus présentant de l’anxiété de trait. Nous croyons que l’utilisation des basses fréquences est à la base des meilleures performances de ces individus, et que l’utilisation de ce type d’information visuelle désambigüise les expressions de peur et de surprise. Nous pensons également que c’est la névrose (chevauchement entre l'anxiété et la dépression), et non l’anxiété même qui est associée à de meilleures performances en reconnaissance d’expressions faciales de la peur. L’utilisation d’instruments mesurant ce concept devrait être envisagée dans de futures études.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.
Resumo:
Ce Texte Constitue un Survol des Differentes Approches Destines a Mesurer le Progres Technique. Nous Utilisons une Notation Uniforme Tout au Long des Demonstrations Mathematiques et Nous Faisons Ressortir les Hypotheses Qui Rendent L'application des Methodes Proposees Envisageable et Qui En Limitent la Portee. les Diverses Approches Sont Regroupees D'apres une Classification Suggeree Par Diewert (1981) Selon Laquelle Deux Groupes Sont a Distinguer. le Premier Groupe Contient Toutes les Methodes Definissant le Progres Technique Comme le Taux de Croissance D'un Indice des Outputs Divise Par un Indice des Inputs (Approche de Divisia). L'autre Groupe Inclut Toutes les Methodes Definissant le Progres Technique Comme Etant le Deplacement D'une Fonction Representant la Technologie (Production, Cout, Distance). Ce Second Groupe Est Subdivise Entre L'approche Econometrique,La Theorie des Nombres Indices et L 'Approche Non Parametrique. une Liste des Pricipaux Economistes a Qui L'on Doit les Diverses Approches Est Fournie. Cependant Ce Survol Est Suffisamment Detaille Pour Etre Lu Sans Se Referer aux Articles Originaux.
Resumo:
Un résumé en anglais est également disponible.
Resumo:
La thèse présente une description géométrique d’un germe de famille générique déployant un champ de vecteurs réel analytique avec un foyer faible à l’origine et son complexifié : le feuilletage holomorphe singulier associé. On montre que deux germes de telles familles sont orbitalement analytiquement équivalents si et seulement si les germes de familles de difféomorphismes déployant la complexification de leurs fonctions de retour de Poincaré sont conjuguées par une conjugaison analytique réelle. Le “caractère réel” de la famille correspond à sa Z2-équivariance dans R^4, et cela s’exprime comme l’invariance du plan réel sous le flot du système laquelle, à son tour, entraîne que l’expansion asymptotique de la fonction de Poincaré est réelle quand le paramètre est réel. Le pullback du plan réel après éclatement par la projection monoidal standard intersecte le feuilletage en une bande de Möbius réelle. La technique d’éclatement des singularités permet aussi de donner une réponse à la question de la “réalisation” d’un germe de famille déployant un germe de difféomorphisme avec un point fixe de multiplicateur égal à −1 et de codimension un comme application de semi-monodromie d’une famille générique déployant un foyer faible d’ordre un. Afin d’étudier l’espace des orbites de l’application de Poincaré, nous utilisons le point de vue de Glutsyuk, puisque la dynamique est linéarisable auprès des points singuliers : pour les valeurs réels du paramètre, notre démarche, classique, utilise une méthode géométrique, soit un changement de coordonée (coordonée “déroulante”) dans lequel la dynamique devient beaucoup plus simple. Mais le prix à payer est que la géométrie locale du plan complexe ambiante devient une surface de Riemann, sur laquelle deux notions de translation sont définies. Après avoir pris le quotient par le relèvement de la dynamique nous obtenons l’espace des orbites, ce qui s’avère être l’union de trois tores complexes plus les points singuliers (l’espace résultant est non-Hausdorff). Les translations, le caractère réel de l’application de Poincaré et le fait que cette application est un carré relient les différentes composantes du “module de Glutsyuk”. Cette propriété implique donc le fait qu’une seule composante de l’invariant Glutsyuk est indépendante.
Resumo:
Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).
Resumo:
Naïvement perçu, le processus d’évolution est une succession d’événements de duplication et de mutations graduelles dans le génome qui mènent à des changements dans les fonctions et les interactions du protéome. La famille des hydrolases de guanosine triphosphate (GTPases) similaire à Ras constitue un bon modèle de travail afin de comprendre ce phénomène fondamental, car cette famille de protéines contient un nombre limité d’éléments qui diffèrent en fonctionnalité et en interactions. Globalement, nous désirons comprendre comment les mutations singulières au niveau des GTPases affectent la morphologie des cellules ainsi que leur degré d’impact sur les populations asynchrones. Mon travail de maîtrise vise à classifier de manière significative différents phénotypes de la levure Saccaromyces cerevisiae via l’analyse de plusieurs critères morphologiques de souches exprimant des GTPases mutées et natives. Notre approche à base de microscopie et d’analyses bioinformatique des images DIC (microscopie d’interférence différentielle de contraste) permet de distinguer les phénotypes propres aux cellules natives et aux mutants. L’emploi de cette méthode a permis une détection automatisée et une caractérisation des phénotypes mutants associés à la sur-expression de GTPases constitutivement actives. Les mutants de GTPases constitutivement actifs Cdc42 Q61L, Rho5 Q91H, Ras1 Q68L et Rsr1 G12V ont été analysés avec succès. En effet, l’implémentation de différents algorithmes de partitionnement, permet d’analyser des données qui combinent les mesures morphologiques de population native et mutantes. Nos résultats démontrent que l’algorithme Fuzzy C-Means performe un partitionnement efficace des cellules natives ou mutantes, où les différents types de cellules sont classifiés en fonction de plusieurs facteurs de formes cellulaires obtenus à partir des images DIC. Cette analyse démontre que les mutations Cdc42 Q61L, Rho5 Q91H, Ras1 Q68L et Rsr1 G12V induisent respectivement des phénotypes amorphe, allongé, rond et large qui sont représentés par des vecteurs de facteurs de forme distincts. Ces distinctions sont observées avec différentes proportions (morphologie mutante / morphologie native) dans les populations de mutants. Le développement de nouvelles méthodes automatisées d’analyse morphologique des cellules natives et mutantes s’avère extrêmement utile pour l’étude de la famille des GTPases ainsi que des résidus spécifiques qui dictent leurs fonctions et réseau d’interaction. Nous pouvons maintenant envisager de produire des mutants de GTPases qui inversent leur fonction en ciblant des résidus divergents. La substitution fonctionnelle est ensuite détectée au niveau morphologique grâce à notre nouvelle stratégie quantitative. Ce type d’analyse peut également être transposé à d’autres familles de protéines et contribuer de manière significative au domaine de la biologie évolutive.
Resumo:
Si la manière de produire une image depuis la reproductibilité technique a toujours été profondément déterminée par la captation d’une réalité physique, le numérique (qui constitue une méthode d’inscription visuelle distincte) devrait, en théorie, modifier la relation du spectateur à ces « nouvelles images ». Toutefois, en pratique, le spectateur fait-il l’expérience des images numériques d’une manière différente de celles issues de la captation? Afin de répondre à cette question, ce mémoire analyse, à l’aide de l’approche sémio-pragmatique, comment le spectateur a conditionné son regard à travers les techniques de la captation (photographie, cinéma et vidéo). Ensuite, cette étude compare les habitudes et les attentes visuelles engendrées par ces techniques aux images numériques. Enfin, cette étude situe le problème de la rupture dans une perspective plus large que celle des techniques afin de poser le questionnement dans toute une tradition de la représentation artistique.
Resumo:
La photographie, le rêve de pouvoir reproduire en série une image, la perte de l'idée d'orginal. Tous les tirages que je peux donner à mes proches sont authentiques. La copie n'existe par; la pellicule l'empêche. [...]
Resumo:
Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.