2 resultados para Chemical oxidation

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cette thèse décrit la synthèse, la caractérisation, les réactivités, et les propriétés physiques de complexes divalents et trivalents de Ni formés à partir de nouveaux ligands «pincer» de type POCN. Les ligands POCN de type amine sont préparés d’une façon simple et efficace via l’amination réductrice de 3-hydroxybenzaldéhyde avec NaBH4 et plusieurs amines, suivie par la phosphination de l’amino alcool résultant pour installer la fonction phosphinite (OPR2); le ligand POCN de type imine 1,3-(i-Pr)2PC6H4C(H)=N(CH2Ph) est préparé de façon similaire en faisant usage de PhCH2NH2 en l’absence de NaBH4. La réaction de ces ligands «pincer» de type POCN avec NiBr2(CH3CN)x en présence d’une base résulte en un bon rendement de la cyclométalation du lien C-H situé en ortho aux fonctions amine et phosphinite. Il fut découvert que la base est essentielle pour la propreté et le haut rendement de la formation des complexes «pincer» désirés. Nous avons préparé des complexes «pincer» plan- carrés de type POCN, (POCNRR΄)NiBr, possédant des fonctions amines secondaires et tertiaires qui démontrent des réactivités différentes selon les substituants R et R΄. Par exemple, les complexes possédant des fonctions amines tertiaires ArCH2NR2 (NR2= NMe2, NEt2, and morpholinyl) démontrent des propriétés rédox intéressantes et pourraient être convertis en leurs analogues trivalents (POCNR2)NiBr2 lorsque réagis avec Br2 ou N-bromosuccinimide (NBS). Les complexes trivalents paramagnétiques à 17 électrons adoptent une géométrie de type plan-carré déformée, les atomes de Br occupant les positions axiale et équatoriale. Les analyses «DSC» et «TGA» des ces composés ont démontré qu’ils sont thermiquement stables jusqu’à ~170 °C; tandis que la spectroscopie d’absorption en solution a démontré qu’ils se décomposent thermiquement à beaucoup plus basse température pour regénérer les complexes divalents ne possédant qu’un seul Br; l’encombrement stérique des substitutants amines accélère cette route de décomposition de façon significative. Les analogues NMe2 et N(morpholinyl) de ces espèces de NiIII sont actifs pour catalyser la réaction d’addition de Kharasch, de CX4 à des oléfines telles que le styrène, tandis qu’il fut découvert que l’analogue le moins thermiquement stable (POCNEt2)Ni est complètement inerte pour catalyser cette réaction. Les complexes (POCNRH)NiBr possédant des fonctions amines secondaires permettent l’accès à des fonctions amines substituées de façon non symétrique via leur réaction avec des halogénures d’alkyle. Un autre avantage important de ces complexes réside dans la possibilité de déprotonation pour préparer des complexes POCN de type amide. De telles tentatives pour déprotoner les fonctions NRH nous ont permis de préparer des espèces dimériques possédant des ligands amides pontants. La nature dimérique des ces complexes [P,C,N,N-(2,6-(i-Pr)2PC6H3CH2NR)Ni]2 (R= PhCH2 et Ph) fut établie par des études de diffraction des rayons-X qui ont démontré différentes géométries pour les cœurs Ni2N2 selon le substituant N : l’analogue (PhCH2)N possède une orientation syn des substitutants benzyles et un arrangement ressemblant à celui du cyclobutane du Ni et des atomes d’azote, tandis que l’analogue PhN adopte un arrangement de type diamant quasi-planaire des atomes du Ni et des atomes d’azote et une orientation anti des substituants phényles. Les espèces dimériques ne se dissocient pas en présence d’alcools, mais elles promouvoient l’alcoolyse catalytique de l’acrylonitrile. De façon intéressante, les rendements de ces réactions sont plus élevés avec les alcools possédant des fonctions O-H plus acides, avec un nombre de «turnover» catalytique pouvant atteindre 2000 dans le cas de m-cresol. Nous croyons que ces réactions d’alcoolyse procèdent par activation hétérolytique de l’alcool par l’espèce dimérique via des liaisons hydrogènes avec une ou deux des fonctions amides du dimère. Les espèces dimériques de Ni (II) s’oxydent facilement électrochimiquement et par reaction avec NBS ou Br2. De façon surprenante, l’oxydation chimique mène à l’isolation de nouveaux produits monomériques dans lesquels le centre métallique et le ligand sont oxydés. Le mécanisme d’oxydation fut aussi investigué par RMN, «UV-vis-NIR», «DFT» et spectroélectrochimie.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le papier bioactif est obtenu par la modification de substrat du papier avec des biomolécules et des réactifs. Ce type de papier est utilisé dans le développement de nouveaux biocapteurs qui sont portables, jetables et économiques visant à capturer, détecter et dans certains cas, désactiver les agents pathogènes. Généralement les papiers bioactifs sont fabriqués par l’incorporation de biomolécules telles que les enzymes et les anticorps sur la surface du papier. L’immobilisation de ces biomolécules sur les surfaces solides est largement utilisée pour différentes applications de diagnostic comme dans immunocapteurs et immunoessais mais en raison de la nature sensible des enzymes, leur intégration au papier à grande échelle a rencontré plusieurs difficultés surtout dans les conditions industrielles. Pendant ce temps, les microcapsules sont une plate-forme intéressante pour l’immobilisation des enzymes et aussi assez efficace pour permettre à la fonctionnalisation du papier à grande échelle car le papier peut être facilement recouvert avec une couche de telles microcapsules. Dans cette étude, nous avons développé une plate-forme générique utilisant des microcapsules à base d’alginate qui peuvent être appliquées aux procédés usuels de production de papier bioactif et antibactérien avec la capacité de capturer des pathogènes à sa surface et de les désactiver grâce à la production d’un réactif anti-pathogène. La conception de cette plate-forme antibactérienne est basée sur la production constante de peroxyde d’hydrogène en tant qu’agent antibactérien à l’intérieur des microcapsules d’alginate. Cette production de peroxyde d’hydrogène est obtenue par oxydation du glucose catalysée par la glucose oxydase encapsulée à l’intérieur des billes d’alginate. Les différentes étapes de cette étude comprennent le piégeage de la glucose oxydase à l’intérieur des microcapsules d’alginate, l’activation et le renforcement de la surface des microcapsules par ajout d’une couche supplémentaire de chitosan, la vérification de la possibilité d’immobilisation des anticorps (immunoglobulines G humaine comme une modèle d’anticorps) sur la surface des microcapsules et enfin, l’évaluation des propriétés antibactériennes de cette plate-forme vis-à-vis l’Escherichia coli K-12 (E. coli K-12) en tant qu’un représentant des agents pathogènes. Après avoir effectué chaque étape, certaines mesures et observations ont été faites en utilisant diverses méthodes et techniques analytiques telles que la méthode de Bradford pour dosage des protéines, l’électroanalyse d’oxygène, la microscopie optique et confocale à balayage laser (CLSM), la spectrométrie de masse avec désorption laser assistée par matrice- temps de vol (MALDI-TOF-MS), etc. Les essais appropriés ont été effectués pour valider la réussite de modification des microcapsules et pour confirmer à ce fait que la glucose oxydase est toujours active après chaque étape de modification. L’activité enzymatique spécifique de la glucose oxydase après l’encapsulation a été évaluée à 120±30 U/g. Aussi, des efforts ont été faits pour immobiliser la glucose oxydase sur des nanoparticules d’or avec deux tailles différentes de diamètre (10,9 nm et 50 nm) afin d’améliorer l’activité enzymatique et augmenter l’efficacité d’encapsulation. Les résultats obtenus lors de cette étude démontrent les modifications réussies sur les microcapsules d’alginate et aussi une réponse favorable de cette plate-forme antibactérienne concernant la désactivation de E. coli K-12. La concentration efficace de l’activité enzymatique afin de désactivation de cet agent pathogénique modèle a été déterminée à 1.3×10-2 U/ml pour une concentration de 6.7×108 cellules/ml de bactéries. D’autres études sont nécessaires pour évaluer l’efficacité de l’anticorps immobilisé dans la désactivation des agents pathogènes et également intégrer la plate-forme sur le papier et valider l’efficacité du système une fois qu’il est déposé sur papier.