3 resultados para Bulb
em Université de Montréal, Canada
Resumo:
Les informations olfactives sont connues pour leur capacité à induire des comportements moteurs spécifiques. En dépit de nombreuses observations comportementales chez les vertébrés, on ne connaît toujours pas les mécanismes et les voies nerveuses qui sous-tendent ces phénomènes de transformation olfacto-locomotrices. Chez la lamproie, des travaux récents ont permis de décrire cette voie, et les mécanismes responsables de la transformation des entrées olfactives en activité locomotrice (Derjean et al., 2010). Cette voie prend origine dans la partie médiane du bulbe olfactif, et envoie des projections vers le tubercule postérieur, une région qui se trouve dans le diencéphale. De là, les neurones projettent directement vers la Région Locomotrice Mésencéphalique, connue pour envoyer des connexions vers les neurones réticulospinaux, et activer la locomotion. L’objectif de cette étude était d’établir si l’ensemble des neurones réticulospinaux répond aux stimulations olfactives. Pour ce faire, nous avons utilisé sur une préparation de cerveau isolé de lamproie des techniques d’électrophysiologie et d’imagerie calcique. La stimulation électrique des nerfs olfactifs, de la région médiane du bulbe olfactif ou du tubercule postérieur a provoqué une activation de toutes les cellules réticulospinales qui se retrouvent dans les quatre noyaux réticulaires (ARRN : Noyau Réticulaire Rhombencéphalique Antérieur; MRN : Noyau Réticulaire Mésencéphalique; MRRN : Noyau Réticulaire Rhombencéphalique Moyen; PRRN : Noyau Réticulaire Rhombencéphalique Postérieur). Seule la partie médiane du bulbe olfactif est impliquée dans le passage de l’information olfactive vers les neurones réticulospinaux. Nous avons aussi découvert que le blocage des récepteurs GABAergiques dans la partie médiane du bulbe olfactif augmentait les réponses olfactives de façon considérable dans les cellules réticulospinales. Nous avons montré ainsi qu’il existe un tonus inhibiteur impliqué dans la dépression modulatrice de la voie olfacto-locomotrice. Ce travail a permis de montrer que la stimulation des afférences sensorielles olfactives active simultanément l’ensemble des populations de neurones réticulospinaux qui commandent la locomotion. De plus, il existerait un tonus inhibiteur GABAergique, au niveau de la partie médiane du bulbe olfactif, responsable d’une dépression modulatrice dans la voie olfacto-locomotrice.
Rôle du système du trijumeau dans la locomotion chez le nouveau-né d’opossum (Monodelphis domestica)
Resumo:
L’opossum Monodelphis domestica naît très immature et grimpe sans aide de la mère, du sinus urogénital à une mamelle où il va s’attacher pour poursuivre son développement. Des informations sensorielles sont nécessaires pour guider le nouveau-né vers la mamelle et les candidats les plus probables sont le toucher, l’équilibre et l’olfaction. Pour tester l’action des différents systèmes sur la motricité chez l’opossum nouveau-né, des régions céphaliques du trijumeau, du vestibulaire et de l’olfaction ont été stimulées électriquement sur des préparations in vitro en comparaison avec une stimulation seuil T (intensité minimale de la stimulation à la moelle épinière cervicale induisant le mouvement des membres antérieurs). Par comparaison, un mouvement similaire était induit par des stimulations à ~2T du ganglion du trijumeau, à ~20 T du complexe vestibulaire, et à ~600 T des bulbes olfactifs. L’étude de l'innervation de la peau faciale et des voies relayant les informations du trijumeau vers la moelle épinière (ME) a été approfondie en utilisant de l’immunohistochimie pour les neurofilament-200 et du traçage rétrograde avec du Texas-Red couplé à des Dextrans Aminés. De nombreuses fibres nerveuses ont été révélées dans le derme de plusieurs régions de la tête. Quelques cellules du ganglion trigéminal projettent à la ME rostrale, mais la majorité projette vers la médulla caudale où se trouvent les neurones secondaires du trijumeau ou des cellules réticulospinales. Les résultats de cette étude indiquent une influence significative des systèmes du trijumeau et du vestibulaire, mais pas de l'olfaction, sur le mouvement des membres antérieurs des opossums nouveau-nés.
Resumo:
La neurogenèse est présente, dans le cerveau adulte, dans la zone sous-ventriculaire (ZSV) encadrant les ventricules latéraux et dans le gyrus dentelé (GD) de l’hippocampe, permettant l’apprentissage, la mémoire et la fonction olfactive. Ces micro-environnements possèdent des signaux contrôlant l’auto-renouvellement des cellules souches neurales (CSN), leur prolifération, leur destin et leur différenciation. Or, lors du vieillissement, les capacités régénératives et homéostatiques et la neurogenèse déclinent. Les patients atteints de la maladie d’Alzheimer (MA), comme le modèle animal reproduisant cette maladie (3xTg-AD), montrent une accélération des phénotypes liés au vieillissement dont une diminution de la neurogenèse. Notre hypothèse est que la découverte des mécanismes affectant la neurogenèse, lors du vieillissement et de la MA, pourrait fournir de nouvelles cibles thérapeutiques pour prévenir le déclin cognitif. Les études sur l’âge d’apparition et les mécanismes altérant la neurogenèse dans la MA sont contrastées et nous ont guidé vers deux études. L’examen des changements dans les étapes de la neurogenèse lors du vieillissement et du développement de la neuropathologie. Nous avons étudié la ZSV, les bulbes olfactifs et le GD de souris femelles de 11 et 18 mois, et l’apparition des deux pathologies associées à la MA : les plaques amyloïdes et les enchevêtrements neurofibrillaires. Nous avons découvert que les souris 3xTg-AD possèdent moins de cellules en prolifération, de progéniteurs et de neuroblastes, induisant une diminution de l’intégration de nouvelles cellules dans le GD et les bulbes olfactifs. Notons que le taux de neurogenèse chez ces souris de 11 mois est similaire à celui des souris de phénotype sauvage de 18 mois, indiquant une accélération des changements liés au vieillissement dans la MA. Dans la ZSV, nous avons aussi démontré une accumulation de gouttelettes lipidiques, suggérant des changements dans l’organisation et le métabolisme de la niche. Enfin, nous avons démontré que le déficit de la neurogenèse apparait lors des premières étapes de la MA, avant l’apparition des plaques amyloïdes et des enchevêtrements neurofibrillaires. A l’examen des mécanismes inhibant la neurogenèse lors de la MA, nous voyons que chez des souris de 5 mois, le déficit de la neurogenèse dans la ZSV et le GD est corrélé avec l’accumulation de lipides, qui coïncide avec l’apparition du déclin cognitif. Nous avons aussi découvert que dans le cerveau humain de patients atteints de la MA et dans les 3xTg-AD, des gouttelettes lipidiques s’accumulaient dans les cellules épendymaires, représentant le principal soutien des CSN de la niche. Ces lipides sont des triglycérides enrichis en acide oléique qui proviennent de la niche et pas d’une défaillance du système périphérique. De plus, l’infusion locale d’acide oléique chez des souris de phénotype sauvage permet de reproduire l’accumulation de triglycérides dans les cellules épendymaires, comme dans la MA. Ces gouttelettes induisent un dérèglement de la voie de signalisation Akt-FoxO3 dans les CSN, menant à l’inhibition de leur activation in vitro et in vivo. Ces résultats permettent une meilleure compréhension de la régulation de la neurogenèse par le métabolisme lipidique. Nous avons démontré un nouveau mécanisme par lequel l’accumulation des lipides dans la ZSV induit une inhibition des capacités de prolifération et de régénération des CSN lors de la MA. Les travaux futurs permettront de comprendre comment et pourquoi le métabolisme lipidique du cerveau est altéré dans la MA, ce qui pourrait offrir de nouvelles voies thérapeutiques pour la prévention et la régénération.