2 resultados para Bose-Einstein correlations

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nous investiguons dans ce travail la création d'échantillons permettant l'étude du comportement des polaritons excitoniques dans les matériaux semi-conducteurs organiques. Le couplage fort entre les états excités d'électrons et des photons impose la création de nouveaux états propres dans le milieu. Ces nouveaux états, les polaritons, ont un comportement bosonique et sont donc capables de se condenser dans un état fortement dégénéré. Une occupation massive de l'état fondamental permet l'étude de comportements explicables uniquement par la mécanique quantique. La démonstration, au niveau macroscopique, d'effets quantiques promet d'éclairer notre compréhension de la matière condensée. De plus, la forte localisation des excitons dans les milieux organiques permet la condensation des polaritons excitoniques organiques à des températures beaucoup plus hautes que dans les semi-conducteurs inorganiques. À terme, les échantillons proposés dans ce travail pourraient donc servir à observer une phase cohérente macroscopique à des températures facilement atteignables en laboratoire. Les cavités proposées sont des résonateurs Fabry-Perot ultraminces dans lesquels est inséré un cristal unique d'anthracène. Des miroirs diélectriques sont fabriqués par une compagnie externe. Une couche d'or de 60 nanomètres est ensuite déposée sur leur surface. Les miroirs sont ensuite mis en contact, or contre or, et compressés par 2,6 tonnes de pression. Cette pression soude la cavité et laisse des espaces vides entre les lignes d'or. Une molécule organique, l'anthracène, est ensuite insérée par capillarité dans la cavité et y est cristallisée par la suite. Dans leur état actuel, les cavités présentent des défauts majeurs quant à la planarité des miroirs et à l'uniformité des cristaux. Un protocole détaillé est présenté et commenté dans ce travail. Nous y proposons aussi quelques pistes pour régler les problèmes courants de l'appareil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L'aimant organique NIT-2Py a été caractérisé expérimentalement et ses propriétés ont été simulées numériquement à partir de la théorie de la fonctionnelle de la densité. Le magnétisme dans ce matériau provient de la présence d'un électron non apparié sur chaque molécule qui a ainsi un moment magnétique non nul. Ceci a été confirmé par des simulations sur une molécule isolée. Les molécules de NIT-2Py cristallisent dans le groupe d'espace P21/c avec huit molécules par maille élémentaire pour former la structure cristalline Alpha étudiée dans ce document. Le moment effectif de la susceptibilité et l'entropie magnétique totale montre que ce matériau est un système de spins 1/2 avec un spin par molécule. Les mesures de chaleur spécifique ont mis en évidence la présence de deux phases magnétiques ordonnées à basse température qui sont séparées par un plateau en aimantation. Une première phase est observée à des champs magnétiques inférieurs à 2.2 T et a une température de transition de 1.32 K en champ nul. Les mesures de susceptibilité magnétique et d'aimantation ont permis d'établir que cette phase ordonnée est antiferromagnétique. Ceci est confirmé par les simulations numériques. La deuxième phase est induite par le champ magnétique avec une température de transition de 0.53 K à 6 T. L'information disponible sur cette phase est limitée et l'étude du système à l'extérieur des phases ordonnées en donne une meilleure compréhension. Un modèle de spins S=1/2 isolés et de dimères S=0 isolés reproduit bien les mesures d'aimantation et de chaleur spécifique au-dessus de 3 K. L'application d'un champ magnétique réduit l'écart d'énergie entre le singulet et le triplet du dimère jusqu'au croisement qui se produit à 6 T. La phase induite émerge précisément à ce croisement et on spécule l'existence d'un condensat de Bose-Einstein des états triplets.