3 resultados para Boolean Functions, Equivalence Class
em Université de Montréal, Canada
Resumo:
Cette thèse traite de la classification analytique du déploiement de systèmes différentiels linéaires ayant une singularité irrégulière. Elle est composée de deux articles sur le sujet: le premier présente des résultats obtenus lors de l'étude de la confluence de l'équation hypergéométrique et peut être considéré comme un cas particulier du second; le deuxième contient les théorèmes et résultats principaux. Dans les deux articles, nous considérons la confluence de deux points singuliers réguliers en un point singulier irrégulier et nous étudions les conséquences de la divergence des solutions au point singulier irrégulier sur le comportement des solutions du système déployé. Pour ce faire, nous recouvrons un voisinage de l'origine (de manière ramifiée) dans l'espace du paramètre de déploiement $\epsilon$. La monodromie d'une base de solutions bien choisie est directement reliée aux matrices de Stokes déployées. Ces dernières donnent une interprétation géométrique aux matrices de Stokes, incluant le lien (existant au moins pour les cas génériques) entre la divergence des solutions à $\epsilon=0$ et la présence de solutions logarithmiques autour des points singuliers réguliers lors de la résonance. La monodromie d'intégrales premières de systèmes de Riccati correspondants est aussi interprétée en fonction des éléments des matrices de Stokes déployées. De plus, dans le second article, nous donnons le système complet d'invariants analytiques pour le déploiement de systèmes différentiels linéaires $x^2y'=A(x)y$ ayant une singularité irrégulière de rang de Poincaré $1$ à l'origine au-dessus d'un voisinage fixé $\mathbb{D}_r$ dans la variable $x$. Ce système est constitué d'une partie formelle, donnée par des polynômes, et d'une partie analytique, donnée par une classe d'équivalence de matrices de Stokes déployées. Pour chaque valeur du paramètre $\epsilon$ dans un secteur pointé à l'origine d'ouverture plus grande que $2\pi$, nous recouvrons l'espace de la variable, $\mathbb{D}_r$, avec deux secteurs et, au-dessus de chacun, nous choisissons une base de solutions du système déployé. Cette base sert à définir les matrices de Stokes déployées. Finalement, nous prouvons un théorème de réalisation des invariants qui satisfont une condition nécessaire et suffisante, identifiant ainsi l'ensemble des modules.
Resumo:
Ce mémoire étudie l'algorithme d'amplification de l'amplitude et ses applications dans le domaine de test de propriété. On utilise l'amplification de l'amplitude pour proposer le plus efficace algorithme quantique à ce jour qui teste la linéarité de fonctions booléennes et on généralise notre nouvel algorithme pour tester si une fonction entre deux groupes abéliens finis est un homomorphisme. Le meilleur algorithme quantique connu qui teste la symétrie de fonctions booléennes est aussi amélioré et l'on utilise ce nouvel algorithme pour tester la quasi-symétrie de fonctions booléennes. Par la suite, on approfondit l'étude du nombre de requêtes à la boîte noire que fait l'algorithme d'amplification de l'amplitude pour amplitude initiale inconnue. Une description rigoureuse de la variable aléatoire représentant ce nombre est présentée, suivie du résultat précédemment connue de la borne supérieure sur l'espérance. Suivent de nouveaux résultats sur la variance de cette variable. Il est notamment montré que, dans le cas général, la variance est infinie, mais nous montrons aussi que, pour un choix approprié de paramètres, elle devient bornée supérieurement.
Resumo:
In a linear production model, we characterize the class of efficient and strategy-proof allocation functions, and the class of efficient and coalition strategy-proof allocation functions. In the former class, requiring equal treatment of equals allows us to identify a unique allocation function. This function is also the unique member of the latter class which satisfies uniform treatment of uniforms.