2 resultados para Biofuel Cells

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’objectif général de cette thèse est de développer une plateforme d’immobilisation d’enzymes efficace pour application en biopile. Grâce à la microencapsulation ainsi qu’au choix judicieux des matériaux polymériques pour la fabrication de la plateforme d’immobilisation, l’efficacité du transfert électronique entre l’enzyme encapsulée et l’électrode serait amélioré. Du même coup, les biopiles employant cette plateforme d’immobilisation d’enzymes pourrait voir leur puissance délivrée être grandement augmentée et atteindre les niveaux nécessaires à l’alimentation d’implants artificiels pouvant remplacer des organes telque le pancréas, les reins, le sphincter urinaire et le coeur. Dans un premier temps, le p-phénylènediamine a été employé comme substrat pour la caractérisation de la laccase encapsulée dans des microcapsules de poly(éthylèneimine). La diffusion de ce substrat à travers les microcapsules a été étudiée sous diverses conditions par l’entremise de son oxidation électrochimique et enzymatique afin d’en évaluer sa réversibilité et sa stabilité. La voltampérométrie cyclique, l’électrode à disque tournante (rotating disk electrode - RDE) et l’électrode à O2 ont été les techniques employées pour cette étude. Par la suite, la famille des poly(aminocarbazoles) et leurs dérivés a été identifée pour remplacer le poly(éthylèneimine) dans la conception de microcapsules. Ces polymères possèdent sur leurs unités de répétition (mono- ou diamino) des amines primaires qui seraient disponibles lors de la polymérisation interfaciale avec un agent réticulant tel qu’un chlorure de diacide. De plus, le 1,8-diaminocarbazole (unité de répétition) possède, une fois polymérisé, les propriétés électrochimiques recherchées pour un transfert d’électrons efficace entre l’enzyme et l’électrode. Il a toutefois été nécessaire de développer une route de synthèse afin d’obtenir le 1,8-diaminocarbazole puisque le protocole de synthèse disponible dans la littérature a été jugé non viable pour être utilisé à grande échelle. De plus, aucun protocole de synthèse pour obtenir du poly(1,8-diaminocarbazole) directement n’a été trouvé. Ainsi, deux isomères de structure (1,6 et 1,8-diaminocarbazole) ont pu être synthétisés en deux étapes. La première étape consistait en une substitution électrophile du 3,6-dibromocarbazole en positions 1,8 et/ou 1,6 par des groupements nitro. Par la suite, une réaction de déhalogénation réductive à été réalisée en utilisant le Et3N et 10% Pd/C comme catalyseur dans le méthanol sous atmosphère d’hydrogène. De plus, lors de la première étape de synthèse, le composé 3,6-dibromo-1-nitro-carbazole a été obtenu; un monomère clé pour la synthèse du copolymère conducteur employé. Finalement, la fabrication de microcapsules conductrices a été réalisée en incorporant le copolymère poly[(9H-octylcarbazol-3,6-diyl)-alt-co-(2-amino-9H-carbazol-3,6-diyl)] au PEI. Ce copolymère a pu être synthétisé en grande quantité pour en permettre son utilisation lors de la fabrication de microcapsules. Son comportement électrochimique s’apparentait à celui du poly(1,8-diaminocarbazole). Ces microcapsules, avec laccase encapsulée, sont suffisamment perméables au PPD pour permettre une activité enzymatique détectable par électrode à O2. Par la suite, la modification de la surface d’une électrode de platine a pu être réalisée en utilisant ces microcapsules pour l’obtention d’une bioélectrode. Ainsi, la validité de cette plateforme d’immobilisation d’enzymes développée, au cours de cette thèse, a été démontrée par le biais de l’augmentation de l’efficacité du transfert électronique entre l’enzyme encapsulée et l’électrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La production de biodiésel par des microalgues est intéressante à plusieurs niveaux. Dans le premier chapitre, un éventail de pour et contres concernant l’utilisation de microalgues pour la production de biocarburant sont ici révisés. La culture d’algues peut s'effectuer en utilisant des terres non-arables, de l’eau non-potable et des nutriments de base. De plus, la biomasse produite par les algues est considérablement plus importante que celle de plantes vasculaires. Plusieurs espèces on le contenu lipidique en forme de triacylglycérols (TAGs), qui peut correspondre jusqu'à 30% - 40% du poids sec de la biomasse. Ces proportions sont considérablement plus élevées que celui des huiles contenues dans les graines actuellement utilisées pour le biodiésel de première génération. Par contre, une production pratique et peu couteuse de biocarburant par des microalgues requiert de surpasser plusieurs obstacles. Ceci inclut le développement de systèmes de culture efficace à faible coût, de techniques de récupération requérant peu d’énergie, et de méthodes d’extraction et de conversion de l’huile non-dommageables pour l’environnement et peu couteuses. Le deuxième chapitre explore l'une des questions importantes soulevées dans le premier chapitre: la sélection d'une souche pour la culture. Une collection de souches de microalgues d'eau douce indigène au Québec a été établi et examiné au niveau de la diversité physiologique. Cette collection est composée de cent souches, que apparaissaient très hétérogènes en terme de croissance lorsque mises en culture à 10±2 °C ou 22±2 °C sur un effluent secondaire d’une usine municipale de traitement des eaux usées (EU), défini comme milieu Bold's Basal Medium (BBM). Des diagrammes de dispersion ont été utilisés pour étudier la diversité physiologique au sein de la collection, montrant plusieurs résultats intéressants. Il y avait une dispersion appréciable dans les taux de croissance selon les différents types de milieux et indépendamment de la température. De manière intéressante, en considérant que tous les isolats avaient initialement été enrichis sur milieu BBM, la distribution était plutôt symétrique autour de la ligne d’iso-croissance, suggérant que l’enrichissement sur BBM n’a pas semblé biaiser la croissance des souches sur ce milieu par rapport aux EU. Également, considérant que les isolats avaient d’abord été enrichis à 22°C, il est assez surprenant que la distribution de taux de croissance spécifiques soit aussi symétrique autour de la ligne d’iso-croissance, avec grossièrement des nombres égaux d’isolats de part et d’autre. Ainsi, l’enrichissement à 22°C ne semble pas biaiser les cellules vers une croissance à cette température plutôt que vers 10°C. Les diagrammes de dispersion obtenus lorsque le pourcentage en lipides de cultures sur BBM ont été comparées à des cultures ayant poussé sur EU soit à 10°C ou 22°C rendent évident que la production de lipides est favorisée par la culture sur EU aux deux températures, et que la production lipidique ne semble pas particulièrement plus favorisée par l’une ou l’autre de ces températures. Lorsque la collection a été examinée pour y déceler des différences avec le site d’échantillonnage, une analyse statistique a montré grossièrement que le même degré de diversité physiologique était retrouvé dans les échantillons des deux différents sites. Le troisième chapitre a poursuivi l'évaluation de la culture d'algues au Québec. L’utilisation de déchets industriels riches en nutriments minéraux et en sources de carbone pour augmenter la biomasse finale en microalgues et le produit lipidique à faible coût est une stratégie importante pour rendre viable la technologie des biocarburants par les algues. Par l’utilisation de souches de la collection de microalgues de l’Université de Montréal, ce rapport montre pour la première fois que des souches de microalgues peuvent pousser en présence de xylose, la source de carbone majoritairement retrouvée dans les eaux usées provenant des usines de pâte et papier, avec une hausse du taux de croissance de 2,8 fois par rapport à la croissance photoautotrophe, atteignant jusqu’à µ=1,1/jour. En présence de glycérol, les taux de croissance atteignaient des valeurs aussi élevées que µ=1,52/jour. La production lipidique augmentait jusqu’à 370% en présence de glycérol et 180% avec le xylose pour la souche LB1H10, démontrant que cette souche est appropriée pour le développement ultérieur de biocarburants en culture mixotrophe. L'ajout de xylose en cultures d'algues a montré certains effets inattendus. Le quatrième chapitre de ce travail a porté à comprendre ces effets sur la croissance des microalgues et la production de lipides. Quatre souches sauvages indigènes ont été obersvées quotidiennement, avant et après l’ajout de xylose, par cytométrie en flux. Avec quelques souches de Chlorella, l’ajout de xylose induisait une hausse rapide de l’accumulation de lipide (jusqu’à 3,3 fois) pendant les premières six à douze heures. Aux temps subséquents, les cellules montraient une diminution du contenu en chlorophylle, de leur taille et de leur nombre. Par contre, l’unique membre de la famille des Scenedesmaceae avait la capacité de profiter de la présence de cette source de carbone sous culture mixotrophe ou hétérotrophe sans effet négatif apparent. Ces résultats suggèrent que le xylose puisse être utilisé avant la récolte afin de stimuler l’augmentation du contenu lipidique de la culture d’algues, soit en système de culture continu ou à deux étapes, permettant la biorestauration des eaux usées provenant de l’industrie des pâtes et papiers. Le cinquième chapitre aborde une autre déché industriel important: le dioxyde de carbone et les gaz à effet de serre. Plus de la moitié du dioxyde de carbone qui est émis dans l'atmosphère chaque jour est dégagé par un processus stationnaire, soit pour la production d’électricité ou pour la fabrication industrielle. La libération de CO2 par ces sources pourrait être atténuée grâce à la biorestauration avec microalgues, une matière première putative pour les biocarburants. Néanmoins, toutes les cheminées dégagent un gaz différent, et la sélection des souches d'algues est vitale. Ainsi, ce travail propose l'utilisation d’un état de site particulier pour la bioprospection de souches d'algues pour être utilisé dans le processus de biorestauration. Les résultats montrent que l'utilisation d'un processus d'enrichissement simple lors de l'étape d'isolement peut sélectionner des souches qui étaient en moyenne 43,2% mieux performantes dans la production de biomasse que les souches isolées par des méthodes traditionnelles. Les souches isolées dans ce travail étaient capables d'assimiler le dioxyde de carbone à un taux supérieur à la moyenne, comparées à des résultats récents de la littérature.