3 resultados para Bacterial activity
em Université de Montréal, Canada
Resumo:
Les réchauffements climatiques associés aux activités anthropiques ont soumis les écosystèmes arctiques à des changements rapides qui menacent leur stabilité à court terme. La diminution dramatique de la banquise arctique est une des conséquences les plus concrètes de ce réchauffement. Dans ce contexte, comprendre et prédire comment les systèmes arctiques évolueront est crucial, surtout en considérant comment les flux de carbone (C) de ces écosystèmes - soit des puits nets, soit des sources nettes de CO2 pour l'atmosphère - pourraient avoir des répercussions importantes sur le climat. Le but de cette thèse est de dresser un portrait saisonnier de l’activité bactérienne afin de déterminer l’importance de sa contribution aux flux de carbone en Arctique. Plus spécifiquement, nous caractérisons pour la première fois la respiration et le recours à la photohétérotrophie chez les microorganismes du golfe d’Amundsen. Ces deux composantes du cycle du carbone demeurent peu décrites et souvent omises des modèles actuels, malgré leur rôle déterminant dans les flux de C non seulement de l’Arctique, mais des milieux marins en général. Dans un premier temps, nous caractérisons la respiration des communautés microbiennes (RC) des glaces de mer. La connaissance des taux de respiration est essentielle à l’estimation des flux de C, mais encore limitée pour les milieux polaires. En effet, les études précédentes dans le golfe d’Amundsen n’ont pas mesuré la RC. Par la mesure de la respiration dans les glaces, nos résultats montrent des taux élevés de respiration dans la glace, de 2 à 3 fois supérieurs à la colonne d'eau, et une production bactérienne jusqu’à 25 fois plus importante. Ces résultats démontrent que la respiration microbienne peut consommer une proportion significative de la production primaire (PP) des glaces et pourrait jouer un rôle important dans les flux biogéniques de CO2 entre les glaces de mer et l’atmosphère (Nguyen et Maranger, 2011). Dans un second temps, nous mesurons la respiration des communautés microbiennes pélagiques du golfe d’Amundsen pendant une période de 8 mois consécutif, incluant le couvert de glace hivernal. En mesurant directement la consommation d'O2, nous montrons une RC importante, mesurable tout au long de l’année et dépassant largement les apports en C de la production primaire. Globalement, la forte consommation de C par les communautés microbiennes suggère une forte dépendance sur recyclage interne de la PP locale. Ces observations ont des conséquences importantes sur notre compréhension du potentiel de séquestration de CO2 par les eaux de l’Océan Arctique (Nguyen et al. 2012). Dans un dernier temps, nous déterminons la dynamique saisonnière de présence (ADN) et d’expression (ARN) du gène de la protéorhodopsine (PR), impliqué dans la photohétérotrophie chez les communautés bactérienne. Le gène de la PR, en conjonction avec le chromophore rétinal, permet à certaines bactéries de capturer l’énergie lumineuse à des fins énergétiques ou sensorielles. Cet apport supplémentaire d’énergie pourrait contribuer à la survie et prolifération des communautés qui possèdent la protéorhodopsine. Bien que détectée dans plusieurs océans, notre étude est une des rares à dresser un portrait saisonnier de la distribution et de l’expression du gène en milieu marin. Nous montrons que le gène de la PR est présent toute l’année et distribué dans des communautés diversifiées. Étonnamment, l’expression du gène se poursuit en hiver, en absence de lumière, suggérant soit qu’elle ne dépend pas de la lumière, ou que des sources de photons très localisées justifie l’expression du gène à des fins sensorielles et de détection (Nguyen et al., soumis au journal ISME). Cette thèse contribue à la compréhension du cycle du C en Arctique et innove par la caractérisation de la respiration et de l’efficacité de croissance des communautés microbiennes pélagiques et des glaces de mer. De plus, nous montrons pour la première fois une expression soutenue de la protéorhodopsine en Arctique, qui pourrait moduler la consommation de C par la respiration et justifier son inclusion éventuelle dans les modélisations du cycle du C. Dans le contexte des changements climatiques, il est clair que l'importance de l’activité bactérienne a été sous-estimée et aura un impact important dans le bilan de C de l'Arctique.
Resumo:
Les antibiotiques aminoglycosidiques sont des agents bactéricides de grande valeur et d’efficacité à large spectre contre les pathogènes Gram-positifs et Gram-négatifs, dont plusieurs membres naturels et semisynthétiques sont importants dans l’histoire clinique depuis 1950. Des travaux crystallographiques sur le ribosome, récompensés par le prix Nobel, ont démontré comment leurs diverses structures polyaminées sont adaptées pour cibler une hélice d’ARN dans le centre de codage de la sous-unité 30S du ribosome bactérien. Leur interférence avec l’affinité et la cinétique des étapes de sélection et vérification des tARN induit la synthèse de protéines à basse fidélité, et l’inhibition de la translocation, établissant un cercle vicieux d’accumulation d’antibiotique et de stress sur la membrane. En réponse à ces pressions, les pathogènes bactériens ont évolué et disséminé une panoplie de mécanismes de résistance enzymatiques et d’expulsion : tels que les N acétyltransférases, les O phosphotransférases et les O nucleotidyltransférases qui ciblent les groupements hydroxyle et amino sur le coeur des aminoglycosides; des méthyl-transférases, qui ciblent le site de liaison ribosomale; et des pompes d’expulsion actives pour l’élimination sélective des aminoglycosides, qui sont utilisés par les souches Gram-négatives. Les pathogènes les plus problématiques, qui présentent aujourd’hui une forte résilience envers la majorité des classes d’antibiotiques sur le bord de la pan-résistance ont été nommés des bactéries ESKAPE, une mnémonique pour Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa et Enterobacteriaceae. La distribution globale des souches avec des mécanismes de résistance envers les standards cliniques aminoglycosides, tels que la tobramycine, l’amikacine et la gentamicine, est comprise entre 20 et 60% des isolées cliniques. Ainsi, les aminoglycosides du type 4,6-disubstitués-2-deoxystreptamine sont inadéquats comme thérapies anti-infectieuses à large spectre. Cependant, la famille des aminoglycosides 4,5-disubstitués, incluant la butirosine, la neomycine et la paromomycine, dont la structure plus complexe, pourrait constituter une alternative. Des collègues dans le groupe Hanessian et collaborateurs d’Achaogen Inc. ont démontré que certains analogues de la paraomomycine et neomycine, modifiés par désoxygénation sur les positions 3’ et 4’, et par substitution avec la chaîne N1-α-hydroxy-γ-aminobutyramide (HABA) provenant de la butirosine, pourrait produire des antibiotiques très prometteurs. Le Chapitre 4 de cette dissertation présente la conception et le développement d’une stratégie semi-synthétique pour produire des nouveaux aminoglycosides améliorés du type 4,5 disubstitués, inspiré par des modifications biosynthétiques de la sisomicine, qui frustrent les mécanismes de résistance bactérienne distribuées globalement. Cette voie de synthèse dépend d’une réaction d’hydrogénolyse de type Tsuji catalysée par palladium, d’abord développée sur des modèles monosaccharides puis subséquemment appliquée pour générer un ensemble d’aminoglycosides hybrides entre la neomycine et la sisomicine. Les études structure-activité des divers analogues de cette nouvelle classe ont été évaluées sur une gamme de 26 souches bactériennes exprimant des mécanismes de résistance enzymatique et d’expulsion qui englobe l’ensemble des pathogènes ESKAPE. Deux des antibiotiques hybrides ont une couverture antibacterienne excellente, et cette étude a mis en évidence des candidats prometteurs pour le développement préclinique. La thérapie avec les antibiotiques aminoglycosidiques est toujours associée à une probabilité de complications néphrotoxiques. Le potentiel de toxicité de chaque aminoglycoside peut être largement corrélé avec le nombre de groupements amino et de désoxygénations. Une hypothèse de longue date dans le domaine indique que les interactions principales sont effectuées par des sels des groupements ammonium, donc l’ajustement des paramètres de pKa pourrait provoquer une dissociation plus rapide avec leurs cibles, une clairance plus efficace et globalement des analogues moins néphrotoxiques. Le Chapitre 5 de cette dissertation présente la conception et la synthèse asymétrique de chaînes N1 HABA β substitutées par mono- et bis-fluoration. Des chaînes qui possèdent des γ-N pKa dans l’intervalle entre 10 et 7.5 ont été appliquées sur une neomycine tétra-désoxygénée pour produire des antibiotiques avancés. Malgré la réduction considérable du γ N pKa, le large spectre bactéricide n’a pas été significativement affecté pour les analogues fluorés isosteriques. De plus, des études structure-toxicité évaluées avec une analyse d’apoptose propriétaire d’Achaogen ont démontré que la nouvelle chaîne β,β difluoro-N1-HABA est moins nocive sur un modèle de cellules de rein humain HK2 et elle est prometteuse pour le développement d’antibiotiques du type neomycine avec des propriétés thérapeutiques améliorées. Le chapitre final de cette dissertation présente la proposition et validation d’une synthèse biomimétique par assemblage spontané du aminoglycoside 66-40C, un dimère C2 symétrique bis-imine macrocyclique à 16 membres. La structure proposée du macrocycle a été affinée par spectroscopie nucléaire à un système trans,trans-bis-azadiène anti-parallèle. Des calculs indiquent que l’effet anomérique de la liaison α glycosidique entre les anneaux A et B fournit la pré-organisation pour le monomère 6’ aldéhydo sisomicine et favorise le produit macrocyclique observé. L’assemblage spontané dans l’eau a été étudié par la dimérisation de trois divers analogues et par des expériences d’entre croisement qui ont démontré la généralité et la stabilité du motif macrocyclique de l'aminoglycoside 66-40C.
Resumo:
Pigs are often colonized by more than one bacterial and/or viral species during respiratory tract infections. This phenomenon is known as the porcine respiratory disease complex (PRDC). Actinobacillus pleuropneumoniae (App) and porcine reproductive and respiratory syndrome virus (PRRSV) are pathogens that are frequently involved in PRDC. The main objective of this project was to study the in vitro interactions between these two pathogens and the host cells in the context of mixed infections. To fulfill this objective, PRRSV permissive cell lines such as MARC-145, SJPL, and porcine alveolar macrophages (PAM) were used. A pre-infection with PRRSV was performed at 0.5 multiplicity of infection (MOI) followed by an infection with App at 10 MOI. Bacterial adherence and cell death were compared. Results showed that PRRSV preinfection did not affect bacterial adherence to the cells. PRRSV and App co-infection produced an additive cytotoxicity effect. Interestingly, a pre-infection of SJPL and PAM cells with App blocked completely PRRSV infection. Incubation of SJPL and PAM cells with an App cell-free culture supernatant is also sufficient to significantly block PRRSV infection. This antiviral activity is not due to LPS but rather by small molecular weight, heat-resistant App metabolites (,1 kDa). The antiviral activity was also observed in SJPL cells infected with swine influenza virus but to a much lower extent compared to PRRSV. More importantly, the PRRSV antiviral activity of App was also seen with PAM, the cells targeted by the virus in vivo during infection in pigs. The antiviral activity might be due, at least in part, to the production of interferon c. The use of in vitro experimental models to study viral and bacterial co-infections will lead to a better understanding of the interactions between pathogens and their host cells, and could allow the development of novel prophylactic and therapeutic tools.