2 resultados para Backpropagation

em Université de Montréal, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La liste des domaines touchés par l’apprentissage machine s’allonge rapidement. Au fur et à mesure que la quantité de données disponibles augmente, le développement d’algorithmes d’apprentissage de plus en plus puissants est crucial. Ce mémoire est constitué de trois parties: d’abord un survol des concepts de bases de l’apprentissage automatique et les détails nécessaires pour l’entraînement de réseaux de neurones, modèles qui se livrent bien à des architectures profondes. Ensuite, le premier article présente une application de l’apprentissage machine aux jeux vidéos, puis une méthode de mesure performance pour ceux-ci en tant que politique de décision. Finalement, le deuxième article présente des résultats théoriques concernant l’entraînement d’architectures profondes nonsupervisées. Les jeux vidéos sont un domaine particulièrement fertile pour l’apprentissage automatique: il estf facile d’accumuler d’importantes quantités de données, et les applications ne manquent pas. La formation d’équipes selon un critère donné est une tˆache commune pour les jeux en lignes. Le premier article compare différents algorithmes d’apprentissage à des réseaux de neurones profonds appliqués à la prédiction de la balance d’un match. Ensuite nous présentons une méthode par simulation pour évaluer les modèles ainsi obtenus utilisés dans le cadre d’une politique de décision en ligne. Dans un deuxième temps nous présentons une nouvelleméthode pour entraîner des modèles génératifs. Des résultats théoriques nous indiquent qu’il est possible d’entraîner par rétropropagation des modèles non-supervisés pouvant générer des échantillons qui suivent la distribution des données. Ceci est un résultat pertinent dans le cadre de la récente littérature scientifique investiguant les propriétés des autoencodeurs comme modèles génératifs. Ces résultats sont supportés avec des expériences qualitatives préliminaires ainsi que quelques résultats quantitatifs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.