6 resultados para BONDED PHASES
em Université de Montréal, Canada
Resumo:
L’électrofilage est une technique permettant de fabriquer des fibres polymériques dont le diamètre varie entre quelques nanomètres et quelques microns. Ces fibres ont donc un rapport surface/volume très élevé. Les fibres électrofilées pourraient trouver des applications dans le relargage de médicaments et le génie tissulaire, comme membranes et capteurs chimiques, ou dans les nanocomposites et dispositifs électroniques. L’électrofilage était initialement utilisé pour préparer des toiles de fibres désordonnées, mais il est maintenant possible d’aligner les fibres par l’usage de collecteurs spéciaux. Cependant, il est important de contrôler non seulement l’alignement macroscopique des fibres mais aussi leur orientation au niveau moléculaire puisque l’orientation influence les propriétés mécaniques, optiques et électriques des polymères. Les complexes moléculaires apparaissent comme une cible de choix pour produire des nanofibres fortement orientées. Dans les complexes d’inclusion d’urée, les chaînes polymères sont empilées dans des canaux unidimensionnels construits à partir d’un réseau tridimensionnel de molécules d’urée liées par des ponts hydrogène. Ainsi, les chaînes polymère sonts très allongées à l’échelle moléculaire. Des nanofibres du complexe PEO-urée ont été préparées pour la première fois par électrofilage de suspensions et de solutions. Tel qu’attendu, une orientation moléculaire inhabituellement élevée a été observée dans ces fibres. De tels complexes orientés pourraient être utilisés à la fois dans des études fondamentales et dans la préparation de matériaux hiérarchiquement structurés. La méthode d’électrofilage peut parfois aussi être utilisée pour préparer des matériaux polymériques métastables qui ne peuvent pas être préparés par des méthodes conventionnelles. Ici, l’électrofilage a été utilisé pour préparer des fibres des complexes stables (α) et "métastables" (β) entre le PEO et l’urée. La caractérisation du complexe β, qui était mal connu, révèle un rapport PEO:urée de 12:8 appartenant au système orthorhombique avec a = 1.907 nm, b = 0.862 nm et c = 0.773 nm. Les chaînes de PEO sont orientées selon l’axe de la fibre. Leur conformation est significativement affectée par les ponts hydrogène. Une structure en couches a été suggérée pour la forme β, plutôt que la structure conventionnelle en canaux adoptée par la forme α. Nos résultats indiquent que le complexe β est thermodynamiquement stable avant sa fonte et peut se transformer en forme α et en PEO liquide par un processus de fonte et recristallisation à 89 ºC. Ceci va dans le sens contraire aux observations faites avec le complexe β obtenu par trempe du complexe α fondu. En effet, le complexe β ainsi obtenu est métastable et contient des cristaux d’urée. Il peut subir une transition de phases cinétique solide-solide pour produire du complexe α dans une vaste gamme de températures. Cette transition est induite par un changement de conformation du PEO et par la formation de ponts hydrogène intermoléculaires entre l’urée et le PEO. Le diagramme de phases du système PEO-urée a été tracé sur toute la gamme de compositions, ce qui a permis d’interpréter la formation de plusieurs mélanges qui ne sont pas à l’équilibre mais qui sont été observés expérimentalement. La structure et le diagramme de phases du complexe PEO-thiourée, qui est aussi un complexe très mal connu, ont été étudiés en détail. Un rapport molaire PEO :thiourée de 3:2 a été déduit pour le complexe, et une cellule monoclinique avec a = 0.915 nm, b = 1.888 nm, c = 0.825 nm et β = 92.35º a été déterminée. Comme pour le complexe PEO-urée de forme β, une structure en couches a été suggérée pour le complexe PEO-thiourée, dans laquelle les molécules de thiourée seraient disposées en rubans intercalés entre deux couches de PEO. Cette structure en couches pourrait expliquer la température de fusion beaucoup plus faible des complexes PEO-thiourée (110 ºC) et PEO-urée de forme β (89 ºC) en comparaison aux structures en canaux du complexe PEO-urée de forme α (143 ºC).
Resumo:
Nous avons investigué, via les simulations de Monte Carlo, les propriétés non-perturbatives du modèle de Higgs abélien en 2+1 dimensions sans et avec le terme de Chern-Simons dans la phase de symétrie brisée, en termes de ses excitations topologiques: vortex et anti-vortex. Le but du présent travail est de rechercher les phases possibles du système dans ce secteur et d'étudier l'effet du terme de Chern-Simons sur le potentiel de confinement induit par les charges externes trouvé par Samuel. Nous avons formulé une description sur réseau du modèle effectif en utilisant une tesselation tétraédrique de l'espace tridimensionnel Euclidien pour générer des boucles de vortex fermées. En présence du terme de Chern-Simons, dans une configuration donnée, nous avons formulé et calculé le nombre d'enlacement entre les différentes boucles de vortex fermées. Nous avons analysé les propriétés du vide et calculé les valeurs moyennes de la boucle de Wilson, de la boucle de Polyakov à différentes températures et de la boucle de 't Hooft en présence du terme de Chern-Simons. En absence du terme de Chern-Simons, en variant la masse des boucles de vortex, nous avons trouvé deux phases distinctes dans le secteur de la symétrie brisée, la phase de Higgs habituelle et une autre phase caractérisée par l'apparition de boucles infinies. D'autre part, nous avons trouvé que la force entre les charges externes est écrantée correpondant à la loi périmètre pour la boucle de Wilson impliquant qu'il n'y a pas de confinement. Cependant, après la transition, nous avons trouvé qu'il existe toujours une portion de charges externes écrantée, mais qu'après une charge critique, l'énergie libre diverge. En présence du terme de Chern-Simons, et dans la limite de constante de couplage faible de Chern-Simons nous avons trouvé que les comportements de la boucle de Wilson et de la boucle de 't Hooft ne changent pas correspondants à une loi périmètre, impliquant qu'il n'y a pas de confinement. De plus, le terme de Chern-Simons ne contribue pas à la boucle de Wilson.
Resumo:
Dans ce mémoire, nous étudions le problème de l'estimation de la variance pour les estimateurs par double dilatation et de calage pour l'échantillonnage à deux phases. Nous proposons d'utiliser une décomposition de la variance différente de celle habituellement utilisée dans l'échantillonnage à deux phases, ce qui mène à un estimateur de la variance simplifié. Nous étudions les conditions sous lesquelles les estimateurs simplifiés de la variance sont valides. Pour ce faire, nous considérons les cas particuliers suivants : (1) plan de Poisson à la deuxième phase, (2) plan à deux degrés, (3) plan aléatoire simple sans remise aux deux phases, (4) plan aléatoire simple sans remise à la deuxième phase. Nous montrons qu'une condition cruciale pour la validité des estimateurs simplifiés sous les plans (1) et (2) consiste à ce que la fraction de sondage utilisée pour la première phase soit négligeable (ou petite). Nous montrons sous les plans (3) et (4) que, pour certains estimateurs de calage, l'estimateur simplifié de la variance est valide lorsque la fraction de sondage à la première phase est petite en autant que la taille échantillonnale soit suffisamment grande. De plus, nous montrons que les estimateurs simplifiés de la variance peuvent être obtenus de manière alternative en utilisant l'approche renversée (Fay, 1991 et Shao et Steel, 1999). Finalement, nous effectuons des études par simulation dans le but d'appuyer les résultats théoriques.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Depuis l’entrée en vigueur du Programme de formation de l’école québécoise en 2001, l’astronomie est à nouveau enseignée dans les classes du Québec. Malheureusement, l’école est mal outillée pour enseigner des concepts astronomiques complexes se déroulant pour la plupart en dehors des heures de classe et sur de longues périodes de temps. Sans compter que bien des phénomènes astronomiques mettent en jeu des astres se déplaçant dans un espace tridimensionnel auquel nous n’avons pas accès depuis notre point de vue géocentrique. Les phases de la Lune, concept prescrit au premier cycle du secondaire, sont de ceux-là. Heureusement, l’école peut compter sur l’appui du planétarium, musée de sciences dédié à la présentation, en accéléré et à toute heure du jour, de simulations ultra réalistes de divers phénomènes astronomiques. Mais quel type de planétarium secondera l’école ? Récemment, les planétariums ont eux aussi subi leur propre révolution : ces institutions sont passées de l’analogique au numérique, remplaçant les projecteurs optomécaniques géocentriques par des projecteurs vidéo qui offrent la possibilité de se déplacer virtuellement dans une simulation de l’Univers tridimensionnel complètement immersive. Bien que la recherche en éducation dans les planétariums se soit peu penchée sur ce nouveau paradigme, certaines de ses conclusions basées sur l’étude des planétariums analogiques peuvent nous aider à concevoir une intervention didactique fructueuse dans ces nouveaux simulateurs numériques. Mais d’autres sources d’inspiration seront invoquées, au premier chef la didactique des sciences, qui conçoit l’apprentissage non plus comme la transmission de connaissances, mais plutôt comme la construction de savoirs par les apprenants eux-mêmes, avec et contre leurs conceptions premières. La conception d’environnements d’apprentissages constructivistes, dont le planétarium numérique est un digne représentant, et l’utilisation des simulations en astronomie, complèteront notre cadre théorique et mèneront à la conception d’une intervention didactique à propos des phases de la Lune dans un planétarium numérique s’adressant à des élèves âgés de 12 à 14 ans. Cette intervention didactique a été mise à l’essai une première fois dans le cadre d’une recherche de développement (ingénierie didactique) visant à l’améliorer, à la fois sur son versant théorique et sur son versant pratique, par le biais de multiples itérations dans le milieu « naturel » où elle se déploie, ici un planétarium numérique gonflable de six mètres de diamètre. Nous présentons les résultats de notre première itération, réalisée en compagnie de six jeunes de 12 à 14 ans (quatre garçons et deux filles) dont nous avons recueilli les conceptions à propos des phases de la Lune avant, pendant et après l’intervention par le biais d’entrevues de groupe, questionnaires, mises en situation et enregistrement des interventions tout au long de l’activité. L'évaluation a été essentiellement qualitative, basée sur les traces obtenues tout au long de la séance, en particulier sous la voûte du planétarium. Ce matériel a ensuite été analysé pour valider les concepts théoriques qui ont mené à la conception de l'intervention didactique, d'une part, mais aussi pour faire émerger des améliorations possibles visant à bonifier l'intervention. Nous avons ainsi constaté que l'intervention provoque effectivement l'évolution des conceptions de la majorité des participants à propos des phases de la Lune, mais nous avons également identifié des façons de rendre l’intervention encore plus efficace à l’avenir.
Resumo:
Ce mémoire traite des propriétés du La2CuO4 dopé en trous, le premier supraconducteur à haute température critique ayant été découvert. Les différentes phases électroniques du cristal y seront présentées, ainsi que le diagramme de phases en dopage de ce matériau. Les trois structures dans lesquelles on peut retrouver ce cristal seront décrites en détail, et leurs liens présumés avec les phases électroniques seront présentés. Il s’en suivra une étude utilisant la théorie de la fonctionnelle de la densité combinée au modèle de Hubbard (DFT+U) des différentes phases structurales, en plus des phases antiferromagnétiques et paramagnétiques. L’effet de la corrélation électronique sur la structure cristalline sera également étudié par l’intermédiaire du paramètre de Hubbard. Le but sera de vérifier si la DFT+U reproduit bien le diagramme de phases expérimentales, et sous quelles conditions. Une étude des effets de l’inclinaison des octaèdres d’oxygène sur la structure électronique sera également présentée.