8 resultados para BAP1
em Université de Montréal, Canada
Resumo:
L'ubiquitination est une modification post-traductionnelle qui joue un rôle central dans divers processus biologiques. Elle peut être contrecarrée par les déubiquitinases (DUBs). "BRCA1-Associated Protein 1" (BAP1) est une déubiquitinase, qui fait partie de complexes multiprotéiques, possèdant une fonction de suppression tumorale ainsi qu'un potentiel anti-métastatique. De plus, BAP1 est phosphorylée suite aux dommages à l’ADN par les kinases ATM/ATR. En nous basant sur ces données, nous avons purifié les protéines associées à BAP1 dans des conditions de stress génotoxique. Bien que la composition du complexe et l’activité DUB semblent inchangées, nous avons pu identifier des changements critiques dans les niveaux et les sites de phosphorylation, confirmant la régulation de BAP1 suite aux dommages à l’ADN. En déplétant BAP1 par ARNi et en utilisant des mutants dominants négatifs, nous avons obtenu des résultats suggèrant que suite au stress génotoxique, cette DUB est requise pour prolonger le point de contrôle en G2/M et ce, en retardant la reprise du cycle cellulaire. D'un autre côté, l'expression de BAP1 dans des cellules cancéreuses qui en sont déficientes restore une ploïdie normale et diminue la fréquence d'aberrations nucléaires, suggérant que cette protéine joue un rôle dans la stabilité génomique. Nos résultats suggèrent fortement que BAP1 joue un rôle dans la réponse des cellules au stress génotoxique et la stabilité génomique. Nos travaux permettront ainsi d’identifier et de caractériser les voies de signalisation cellulaire régulant l’activité et la fonction de BAP1 durant les périodes d’exposition à des agents qui endommagent l’ADN. Les connaissances acquises seront donc d’une valeur tangible pour nôtre compréhension de la mutagenèse induite par des agents carcinogènes, un déterminant clé de la formation des tumeurs.
Resumo:
Le régulateur transcriptionnel BAP1 est une déubiquitinase nucléaire (DUB) dont le substrat est l’histone H2A modifiée par monoubiquitination au niveau des residus lysines 118 et 119 (K118/K119). Depuis les dernières années, BAP1 emerge comme un gene suppresseur de tumeur majeur. En effet, BAP1 est inactivé dans un plethore de maladies humaines héréditaires et sporadiques. Cependant, malgré l’accumulation significative des connaissances concernant l’occurrence, la pénétrance et l’impact des défauts de BAP1 sur le développement de cancers, ses mécanismes d’action et de régulation restent très peu compris. Cette étude est dédiée à la caractérisation moléculaire et fonctionnelle du complexe multi-protéique de BAP1 et se présente parmi les premiers travaux décrivant sa régulation par des modifications post-traductionnelles. D’abord, nous avons défini la composition du corps du complexe BAP1 ainsi que ses principaux partenaires d’interaction. Ensuite, nous nous sommes spécifiquement intéressés a investiguer d’avantage deux principaux aspects de la régulation de BAP1. Nous avons d’abord décrit l’inter-régulation entre deux composantes majeures du complexe BAP1, soit HCF-1 et OGT. D’une manière très intéressante, nous avons trouvé que le cofacteur HCF-1 est un important régulateur des niveaux protéiques d’OGT. En retour, OGT est requise pour la maturation protéolytique de HCF-1 en promouvant sa protéolyse par O-GlcNAcylation, un processus de régulation très important pour le bon fonctionnement de HCF-1. D’autre part, nous avons découvert un mécanisme unique de régulation de BAP1 médiée par l’ubiquitine ligase atypique UBE2O. en effet, UBE2O se caractérise par le fait qu’il s’agit aussi bien d’une ubiquitine conjuratrice et d’une ubiquitine ligase. UBE2O, multi-monoubiquitine BAP1 au niveau de son domaine NLS et promeut son exclusion du noyau, le séquestrant ainsi dans le cytoplasme. De façon importante, nos travaux ont permis de mettre de l’emphase sur le rôle de l’activité auto-catalytique de chacune de ces enzymes, soit l’activité d’auto-déubiquitination de BAP1 qui est requise pour la maintenance de sa localisation nucléaire ainsi que l’activité d’auto-ubiquitination d’UBE2O impliquée dans son transport nucléo-cytoplasmique. De manière significative, nous avons trouvé que des défauts au niveau de l’auto-déubiquitination de BAP1 due à des mutations associées à certains cancers indiquent l’importance d’une propre regulation de cette déubiquitinase pour les processus associés à la suppression de tumeurs.
Resumo:
La déubiquitinase BAP1 (« BRCA1-Associated Protein1 ») a initialement été isolée pour sa capacité de promouvoir la fonction suppressive de tumeurs de BRCA1. BAP1 est muté de manière homozygote dans plusieurs cancers (tel que le cancer du rein, de la peau, de l’oeil et du sein) suggérant fortement que cette déubiquitinase est un suppresseur de tumeurs. Effectivement, la surexpression de BAP1 réduit la prolifération cellulaire et la croissance tumorale dans des modèles de xénogreffe de souris. Toutefois, la fonction biologique et le mécanisme d’action de cette déubiquitinase restent encore marginalement connus. Ainsi, les objectifs de cette thèse sont de caractériser la fonction biologique de BAP1 et de révéler les bases moléculaires de sa fonction suppressive de tumeurs. Pour déterminer la fonction biologique de BAP1, nous avons immuno-purifié et identifié les protéines associées à BAP1, qui s’avèrent être principalement des facteurs et co-facteurs de transcription. Ensuite, nous avons démontré que BAP1 est un régulateur de la transcription. Parallèlement, un autre groupe a montré que BAP1 chez la drosophile, Calypso, régule l’ubiquitination de H2A et la transcription génique. D’autre part, nos résultats d’analyse d’expression génique globale suggèrent que BAP1 jouerait un rôle important dans la réponse aux dommages à l’ADN. Effectivement, des expériences de gain et de perte de fonction (méthode de l’ARNi, modèle de cellules KO en BAP1 et de cellules déficientes en BAP1 re-exprimant BAP1) ont révélé que cette déubiquitinase régule la réponse aux bris double brin d’ADN par la recombinaison homologue. Nos résultats suggèrent que BAP1 exerce sa fonction suppressive de tumeurs en contrôlant la réparation sans erreur de l’ADN via la recombinaison homologue. En cas d’inactivation de BAP1, les cellules deviendront plus dépendantes du mécanisme de réparation par jonction d'extrémités non-homologues, qui est potentiellement mutagénique causant ainsi l’instabilité génomique. D’autres études seront nécessaires afin de déterminer le rôle exact de BAP1 dans la transcription et de comprendre comment la dérégulation de l’ubiquitination de H2A contribue au développement du cancer. Définir les mécanismes de suppression tumorale est de grand intérêt, non seulement pour comprendre la carcinogénèse mais également pour le développement de nouvelles thérapies contre cette maladie.
Resumo:
L’ubiquitination est une modification post-traductionnelle qui joue un rôle majeur dans la régulation d’une multitude de processus cellulaires. Dans cette thèse, je discuterai de la caractérisation de deux protéines, BRCA1 et BAP1, soit deux suppresseurs de tumeurs fonctionnellement reliés. BRCA1, une ubiquitine ligase qui catalyse la liaison de l’ubiquitine à une protéine cible, est mutée dans les cancers du sein et de l'ovaire. Il est bien établi que cette protéine aide à maintenir la stabilité génomique suite à un bris double brin de l’ADN (BDB), et ce, à l’aide d’un mécanisme de réparation bien caractérisé appelé recombinaison homologue. Cependant, les mécanismes de régulation de BRCA1 suite à des stresses génotoxiques n’impliquant pas directement un BDB ne sont pas pleinement élucidés. Nous avons démontré que BRCA1 est régulée par dégradation protéasomale suite à une exposition des cellules à deux agents génotoxiques reconnus pour ne pas directement générer des BDBs, soit les rayons UV, qui provoquent la distorsion de l’hélice d’ADN, et le méthyle méthanesulfonate (MMS), qui entraîne l’alkylation de l’ADN. La dégradation de BRCA1 est réversible et indépendante des kinases associées à la voie des PI3 kinase, soit ATM, ATR et DNA-PK, protéines qui sont rapidement activées par les dommages à l’ADN. Nous proposons que la dégradation de BRCA1 prévienne son recrutement intempestif, ainsi que celui des facteurs qui lui sont associés, à des sites de dommages d’ADN qui ne sont pas des BDBs, et que cette régulation coordonne la réparation de l’ADN. L’enzyme de déubiquitination BAP1 a initialement été identifiée comme une protéine capable d’interagir avec BRCA1 et de réguler sa fonction. Elle est également connue pour sa capacité à se lier avec les protéines du groupe Polycomb, ASXL1 et ASXL2. Cependant, l’importance de ces interactions n’a toujours pas été établie. Nous avons démontré que BAP1 forme deux complexes protéiques mutuellement exclusifs avec ASXL1 et ASXL2. Ces interactions sont critiques pour la liaison de BAP1 à l’ubiquitine ainsi que pour la stimulation de son activité enzymatique envers l’histone H2A. Nous avons également identifié des mutations de BAP1 dérivées de cancers qui empêchent à la fois son interaction avec ASXL1 et AXSL2, et son activité de déubiquitinase, ce qui fournit un lien mécanistique direct entre la déubiquitination de H2A et la tumorigenèse. Élucider les mécanismes de régulation de BRCA1 et BAP1 menera à une meilleure compréhension de leurs rôles de suppresseurs de tumeurs, permettant ainsi d’établir de nouvelles stratégies de diagnostic et traitement du cancer.
Resumo:
BRCA1 est un suppresseur de tumeur majeur jouant un rôle dans la transcription, la réparation de l’ADN et le maintien de la stabilité génomique. En effet, des mutations dans le gène BRCA1 augmentent considerablement le risque de cancers du sein et de l’ovaire. BRCA1 a été en majorité caractérisé pour son rôle dans la réparation de l’ADN par la voie de recombinaison homologue (HR) en présence de bris double brins, par example, induits par l’irradiation gamma (IR). Cependant, la fonction de BRCA1 dans d’autres voies de réparation de l’ADN, comme la réparation par excision de nucléotides (NER) ou par excision de base (BER), demeurent toutefois obscures. Il est donc important de comprendre la régulation de BRCA1 en présence d’agents génotoxiques comme le méthyle méthanesulfonate (MMS) ou l’UV, qui promouvoient le BER et le NER respectivement. Nos observations suggèrent que BRCA1 est dégradée par le protéasome après traitement avec le MMS ou les UV, et non avec l’IR. Par ailleurs, cette dégradation semble compromettre le recrutement de Rad51, suggérant que la voie de HR est inhibée. Nos résultats suggèrent que la HR est inhibée afin d’éviter l’activation simultanée de multiples voies de réparation. Nous avons aussi observé que la dégradation BRCA1 est réversible et que la restauration des niveaux de BRCA1 coïncide avec le recrutement de Rad51 aux sites de dommages. Cela suggère que la HR est réactivée tardivement par les bris double brins générés suite à l’effondrement des fourches de réplication. Ayant observé que BRCA1 est hautement régulé par l’ubiquitination et est ciblé par le protéasome pour dégradation, nous avons émis une hypothèse que BRCA1 est régulé par des déubiquitinases. Cela amène à caractériser plus en profondeur par un criblage en déplétant les déubiquitinases individuellement par RNAi et en observant leur effet sur le recrutement de BRCA1 et des protéines reliées à cette voie. Un criblage préliminaire nous a permi d’identifié candidats potentiels tel que BAP1, CXORF53, DUB3, OTUB1 et USP36.
Resumo:
Les modifications post-traductionnelles telles que la phosphorylation, l’OGlcNAcylation et l’ubiquitination jouent des rôles critiques dans la coordination des fonctions protéiques et par conséquent influencent grandement de nombreux processus cellulaires. Il est à noter que ces modifications sont hautement dynamiques et finement regulées. Par exemple, l’ubiquitination peut être réversible via l’action des déubiquitinases comme le suppresseur de tumeurs BAP1. Parmis les gènes codant pour les déubiquitinases, BAP1 est la plus souvent mutée dans le cancer. Des études récentes ont démontré l’importance des dynamiques de modifications post-traductionnelles dans la régulation du complexe BAP1. En plus, BAP1 forme un complexe multi-protéiques contenant plusieurs régulateurs transcriptionnels comme la protéine polycomb OGT et les facteurs de transcription FOXK1 et FOXK2. OGT est une enzyme unique qui catalyze l’ajout d’un groupement O-GlcNAc sur ses substrats afin d’en moduler l’activité enzymatique, les interactions protéines-protéines et leur localisation cellulaire. Cette modification est aussi liée au métabolisme puisque son substrat donneur, l’UDP-GlcNAc, est dérivé de la voie biosynthétique des hexosamines. Parallèlement, FOXK1/2 ont aussi été démontrés comme étant critiques à des processus métaboliques telles que la myogenèse et l’autophagie. Lors de nos études, nous avons identifié FOXK1 comme un nouveau substrat d’OGT. De plus, les niveaux d’O-GlcNAcylation de FOXK1 fluctuent lors de l’entrée/sortie du cycle cellulaire. En outre, nous avons identifié l’importance de FOXK1 dans l’adipogenèse et observé que l’interaction FOXK1/BAP1 est affectée par le métabolisme cellulaire. En résumé, nos études ont révélé l’importance d’OGT dans la régulation de certaines composantes du complexe BAP1, ce qui aidera à la compréhension de l’effet suppresseur de tumeur de BAP1 ainsi que son mécanisme d'action dans différents processus tel que le remodelage de la chromatine.
Resumo:
L’O-GlcNAcylation est une modification post-traductionnelle qui consiste en l’ajout covalent du N-acetylglucosamine au groupement hydroxyle des sérines et thréonines des protéines nucléaires et cytoplasmiques. Ce type de glycosylation atypique est régulé de manière très dynamique par l’action de l’O-GlcNAc transférase (OGT) et de l’O-GlcNAcase (OGA) qui catalysent et hydrolysent cette modification respectivement. Aujourd’hui, OGT émerge comme un régulateur transcriptionnel et senseur critique du métabolisme où les protéines ciblées par l’O-GlcNAcylation couvrent la presque totalité des voies de signalisation cellulaire. Récemment, des études ont aussi proposé qu’OGT soit impliquée dans la régulation épigénétique par l’O-GlcNAcylation des histones. Dans le but de caractériser le rôle fonctionnel d’OGT dans la régulation épigénétique, nous avons revisité le concept d’O-GlcNAcylation des histones et, de manière surprenante, n’avons pu confirmer cette observation. En fait, nos données indiquent que les outils disponibles pour détecter l’O-GlcNAcylation des histones génèrent des artéfacts. De ce fait, nos travaux supportent plutôt un modèle où la régulation épigénétique médiée par OGT se fait par l’O-GlcNAcylation de régulateurs transcriptionnels recrutés à la chromatine. Parmi ceux-ci, OGT s’associe au complexe suppresseur de tumeurs BAP1. En étudiant le rôle d’OGT dans ce complexe, nous avons identifié le facteur de transcription FOXK1 comme un nouveau substrat d’OGT et démontrons qu’il est régulé par O-GlcNAcylation durant la prolifération cellulaire. Enfin, nous démontrons que FOXK1 est aussi requis pour l’adipogenèse. Ensemble, nos travaux suggèrent un rôle important d’OGT dans la régulation du complexe BAP1.
Resumo:
L’ubiquitination, une modification post-traductionnelle importante pour le contrôle de nombreux processus cellulaires, est une réaction réversible. La réaction inverse, nommée déubiquitination est catalysée par les déubiquitinases (DUB). Nous nous sommes intéressés dans nos travaux à étudier l’ubiquitination de l’histone H2A (H2Aub), au niveau des résidus lysines 118 et 119 (K118/K119), une marque épigénétique impliquée dans la régulation de la prolifération cellulaire et la réparation de l’ADN. Le régulateur transcriptionnel BAP1, une déubiquitinase nucléaire, a été initialement identifié pour sa capacité à promouvoir la fonction suppressive de tumeurs de BRCA1. BAP1 forme un complexe multi-protéique avec plusieurs facteurs transcriptionnels et sa fonction principale est la déubiquitination de H2Aub. Plusieurs études ont démontré que BAP1 est un gène suppresseur de tumeurs majeur et qu’il est largement muté et inactivé dans une multitude de cancers. En effet, BAP1 émerge comme étant la DUB la plus mutée au niveau des cancers. Cependant, le ou les mécanismes d’action et de régulation du complexe BAP1 restent très peu connus. Dans cette étude nous nous sommes intéressés à la caractérisation moléculaire et fonctionnelle des partenaires protéiques de BAP1. De manière significative nous avons caractérisé un mécanisme unique de régulation entre deux composants majeurs du complexe BAP1 à savoir, HCF-1 et OGT. En effet, nous avons démontré que HCF-1 est requis pour maintenir le niveau protéique de OGT et que cette dernière est indispensable pour la maturation protéolytique de HCF-1 en promouvant son clivage par O-GlcNAcylation, une signalisation cellulaire nécessaire au bon fonctionnement de HCF-1. Également, nous avons découvert un nouveau mécanisme de régulation de BAP1 par l’ubiquitine ligase atypique UBE2O. En effet, UBE2O agit comme un régulateur négatif de BAP1 puisque l’ubiquitination de ce dernier induit sa séquestration dans le cytoplasme et l’inhibition de sa fonction suppressive de tumeurs. D’autre part nous nous sommes penchés sur la caractérisation de l’association de BAP1 avec deux facteurs de la famille des protéines Polycombes nommés ASXL1 et ASXL2 (ASXL1/2). Nous avons investigué le rôle de BAP1/ASXL1/2, particulièrement dans les mécanismes de déubiquitination et suppression de tumeurs. Nous avons démontré que BAP1 interagit directement iii via son domaine C-terminale avec le même domaine ASXM de ASXL1/2 formant ainsi deux complexes mutuellement exclusifs indispensables pour induire l’activité déubiquitinase de BAP1. De manière significative, ASXM s’associe avec BAP1 pour créer un nouveau domaine composite de liaison à l’ubiquitine. Ces interactions BAP1/ASXL1/2 régulent la progression harmonieuse du cycle cellulaire. De plus, la surexpression de BAP1 et de ASXL2 au niveau des fibroblastes induit la sénescence de manière dépendante de leurs interactions. D’autre part, nous avons identifié des mutations de cancers au niveau de BAP1 le rendant incapable de lier ASXL1/2, d’exercer sa fonction d’autodéubiquitination et de ce fait d’agir comme suppresseur de tumeurs. Ainsi nous avons révélé un lien étroit entre le gène suppresseur de tumeurs BAP1, son activité déubiquitinase et le contrôle de la prolifération cellulaire.