2 resultados para Assembled Synthetic Proteins

em Université de Montréal, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La membrane cellulaire est principalement une bicouche phospholipidique constituant une barrière qui régule les échanges entre la cellule et son environnement. Son intérieur hydrophobe empêche le passage d’espèces hydrophiles, chargées, de grande masse moléculaire et polaires, qui sont généralement transportées par des protéines à travers la bicouche. Dans certains cas de systèmes défectueux (e.g. les canalopathies), l’équilibre des concentrations en ions à l’intérieur et à l’extérieur des cellules est perturbé et les cellules sont compromises. C’est pourquoi le développement de transporteurs transmembranaires synthétiques est nécessaire. De nombreux travaux ont été faits dans le développement de transporteurs synthétiques d’anions (particulièrement du chlorure). Dans cette thèse, nous présentons nos travaux sur un nouveau transporteur d’anion appelé axe parapluie, capable de changer de conformation dépendamment de la polarité de son environnement. Dans un premier temps, nous avons conçu le design, puis synthétisé ces axes parapluie qui montrent une importante activité en tant que transporteur de chlorures. Ces composés réunissent deux concepts : - Le parapluie, constitué d’acides biliaires amphiphiles (une face hydrophile, une face hydrophobe). La flexibilité des articulations combinée à la grande surface des acides choliques permettent d’empêcher les interactions défavorables entre les parties hydrophiles et hydrophobes, ce qui facilite l’insertion dans la bicouche. - Un site ammonium secondaire en tant que site de reconnaissance, capable de former des ponts hydrogène avec des ions chlorure. De plus, l’axe peut complexer une roue de type éther couronne pour former un pseudo-rotaxane ou rotaxane parapluie ce qui résulte en l’inhibition partielle de leurs propriétés de transport. Ceci nous mène au second objectif de cette thèse, le développement d’un nouveau moyen de transport pour les médicaments cycliques. Certains macrocycles polaires et biologiquement actifs tels que les nactines ont besoin d’atteindre leur objectif à l’intérieur de la cellule pour jouer leur rôle. La membrane cellulaire est alors un obstacle. Nous avons imaginé tirer profit de notre axe parapluie pour transporter un médicament cyclique (en tant que roue d’un rotaxane parapluie). Les assemblages des rotaxanes parapluie furent accomplis par la méthode de clipage. Le comportement de l’axe et du rotaxane parapluie fut étudié par RMN et fluorimétrie. Le mouvement du parapluie passant d’une conformation fermée à exposée dépendamment du milieu fut observé pour le rotaxane parapluie. Il en fut de même pour les interactions entre le rotaxane parapluie et des vésicules constituées de phospholipides. Finalement, la capacité du rotaxane parapluie à franchir la bicouche lipidique pour transporter la roue à l’intérieur de la vésicule fut démontrée à l’aide de liposomes contenant de la α-chymotrypsine. Cette dernière pu cliver certains liens amide de l’axe parapluie afin de relarguer la roue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Avec l’apparition de plus en plus de souches de bactérie résistante aux antibiotiques, le développement de nouveaux antibiotiques est devenu une important problématique pour les agences de santé. C’est pour cela que la création de nouvelles plateformes pour accélérer la découverte de médicaments est devenu un besoin urgent. Dans les dernières décennies, la recherche était principalement orientée sur la modification de molécules préexistantes, la méta-analyse d’organismes produisant des molécules activent et l’analyse de librairies moléculaires pour trouver des molécules synthétiques activent, ce qui s’est avéré relativement inefficace. Notre but était donc de développer de nouvelles molécules avec des effets thérapeutiques de façon plus efficace à une fraction du prix et du temps comparé à ce qui se fait actuellement. Comme structure de base, nous avons utilisé des métabolites secondaires qui pouvaient altérer le fonctionnement des protéines ou l’interaction entre deux protéines. Pour générer ces molécules, j’ai concentré mes efforts sur les terpènes, une classe de métabolites secondaires qui possède un large éventail d’activités biologiques incluant des activités antibactériennes. Nous avons développé un système de chromosome artificiel de levure (YAC) qui permet à la fois l’assemblage directionnel et combinatoire de gènes qui permet la création de voies de biosynthèse artificielles. Comme preuve de concept, j’ai développé des YACs qui contiennent les gènes pour l’expression des enzymes impliquées dans la biosynthèse de la -carotène et de l’albaflavenone et produit ces molécules avec un haut rendement. Finalement, Des YACs produits à partir de librairies de gènes ont permis de créer une grande diversité de molécules.